intersection of straight line with (lagrange) polynomial


by bigfooted
Tags: intersection, polynomial, straight line, vector analysis
bigfooted
bigfooted is offline
#1
Dec24-13, 05:43 AM
P: 265
Hi,

To calculate the intersection of two straight lines the cross product of the line vectors can be used, i.e. when the lines start in points p and q, and have direction vectors r and s, then if the cross product r x s is nonzero, the intersection point is q+us, and can be found from
[itex]p+t\cdot r = q+u\cdot s[/itex].
using
[itex]t=\frac{(q-p)\times s}{r \times s}[/itex]


I was wondering how to derive such a relationship for the intersection between a straight line and a second order polynomial.

Specifically, I'm interested in second order Lagrange (and 3rd order Hermite) polynomials:

[itex]x=\Psi_1x_1+\Psi_2x_2+\Psi_3x_3[/itex],

with

[itex]\Psi_i=\prod_{M=1,M ≠ N}^{n}\frac{\xi-\xi_M}{\xi_N-\xi_M}[/itex]

where [itex]\xi=0..1[/itex] and [itex]x_1[/itex] is the starting point, [itex]x_2[/itex] the midpoint and [itex]x_3[/itex] the endpoint

My guess is that standard techniques to find the intersection first transform the second order polynomial to the unit plane where the polynomial reduces to a line, then find the intersection and then transform back, but a (quick) search didn't give me anything.
Phys.Org News Partner Mathematics news on Phys.org
Hyperbolic homogeneous polynomials, oh my!
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins

Register to reply

Related Discussions
Linear Algebra- Finding the intersection of two straight lines. Calculus & Beyond Homework 1
Lagrange Polynomial Interpolation Calculus & Beyond Homework 5
Ray-Polynomial Intersection General Math 0
Lagrange Multipler and Max/Min point of intersection Calculus & Beyond Homework 5
could a vector be also a curved line not only a straight line? General Math 3