The energy of a particle is a function of its "state"

In summary, the state of a particle refers to its specific properties and characteristics, including its position, momentum, and energy. The energy of a particle is directly related to its state, with different states having different levels of energy. Any change in energy would require a change in the particle's state. The energy of a particle is not constant and can vary depending on its state, particularly for quantum particles. It can be measured through various methods, such as using instruments or observing its effects on its surroundings.
  • #1
quasar987
Science Advisor
Homework Helper
Gold Member
4,807
32
This is for a physics homework but the problem is essentially combinatorial in nature.

There are 5 identical particles. Each can have an energy of 1,2,3 or 4.
The energy of a particle is a function of its "state", and it is possible that to two different states correspond the same energy. As a matter of fact, we are told that there is 1 state of energy 1, 3 of energy 2, 4 of energy 3 and 5 of energy 4. If we call state of the system a particular combination of states that the particles are in, how many states of the system are there, provided that the total energy of the system (i.e. the sum of the individual energies of all five particles) is 12?

Note that since the particles are identical, we do not make a distinction btw the subset of system states arising from the case "particle 1 has energy 1 and particle 2 has energy 3" and the subset arising when "particle 1 has energy 3 and partcile 2 has energy 1".

It seems none of the tools of combinatorics are fit for this problem.
 
Last edited:
Physics news on Phys.org
  • #2
For the possible energy combination, I found

(4,4,2,1,1)
(4,3,3,1,1)
(4,3,2,2,1)
(4,2,2,2,2)
(3,3,2,2,2)
(3,3,3,2,1)

Yeah, I'm pretty sure I didn't miss one.
 
  • #3
Okay, so you have 6 energy combinations, let's call them E1, ..., E6. If f(Ei) is the number of state combinations that give rise to an energy combination Ei, then the number of state combinations that are possible in total is [itex]\sum _{i=1} ^6 f(Ei)[/itex]. If we say E1 = (4,4,2,1,1), then f(E1) is clearly [itex]({{5}\choose{2}} + 5)({{3}\choose{1}})({{1}\choose{2}} + 1)[/itex], right?
 
  • #4
It feels like there should be a generating function approach to this problem, but I'm not seeing it off hand.
 
  • #5
I would say f(E_1) is just 5x5x3x1x1, because we don't care which particle has which energy. See the "note" in the OP.
 
  • #6
I would write out a 4-tuple representing the number of particles at each energy, ie, (a,b,c,d) corresponds to a system with a particles at E=1, b at E=2, and so on. Since there is more than 1 state with a given energy, each 4-tuple actually corresponds to several distinct system states. The number of states corresponding to (a,b,c,d) can be found as follows: first, there is only 1 way to put the a particles in the 1 E=1 state. Next, the number of ways to put b particles into the three E=2 states is equal to the number of ordered triples whose entries are non-negative integers summing to b, which is a relatively simple combinatorics problem. Continuing this way, get a general formula for the number of states represented by (a,b,c,d), then translate what you found in your second post into this language and add it up.
 
  • #7
Oh right... just f(E_1) = 5x5x3x1x1 counts way too much states.
 
  • #8
Well, there's always the easy, brute force approach:
Code:
states = [(1, 1), (2, 2), (3, 2), (4, 2), (5, 3), (6, 3), (7, 3), (8, 3), (9, 4), (10, 4), (11, 4), (12, 4), (13, 4)]
allsystem = [(x, y, z, t, u) | (x, a) <- states, (y, b) <- states, (z, c) <- states, (t, d) <- states, (u, e) <- states, a + b + c + d + e == 12 && x >= y && y >= z && z >= t && t >= u]

f = [1..4]
energies = [(a, b, c, d, e) | a<-f, b<-f, c<-f, d<-f, e<-f, a + b + c + d + e == 12, a>=b, b>=c, c>=d, d>=e]
Here I associate each of the thirteen states with its energy level and put that in the variable states, and then find all ordered quintuplets of states such that the corresponding energy levels sum to 12, and each entry in the quintuplet is >= the next element so that I don't get duplicated system states. Finding the energies is done in a similar way.

Then in the haskell interpreter I find that energies = [(3,3,2,2,2),(3,3,3,2,1),(4,2,2,2,2),(4,3,2,2,1),(4,3,3,1,1),(4,4,2,1,1)] (as you had done by hand) and that the length of allsystem is 450. Specifically the set of all system states is:
Code:
[(5,5,2,2,2),(5,5,3,2,2),(5,5,3,3,2),(5,5,3,3,3),(5,5,4,2,2),(5,5,4,3,2),(5,5,4,
3,3),(5,5,4,4,2),(5,5,4,4,3),(5,5,4,4,4),(5,5,5,2,1),(5,5,5,3,1),(5,5,5,4,1),(6,
5,2,2,2),(6,5,3,2,2),(6,5,3,3,2),(6,5,3,3,3),(6,5,4,2,2),(6,5,4,3,2),(6,5,4,3,3)
,(6,5,4,4,2),(6,5,4,4,3),(6,5,4,4,4),(6,5,5,2,1),(6,5,5,3,1),(6,5,5,4,1),(6,6,2,
2,2),(6,6,3,2,2),(6,6,3,3,2),(6,6,3,3,3),(6,6,4,2,2),(6,6,4,3,2),(6,6,4,3,3),(6,
6,4,4,2),(6,6,4,4,3),(6,6,4,4,4),(6,6,5,2,1),(6,6,5,3,1),(6,6,5,4,1),(6,6,6,2,1)
,(6,6,6,3,1),(6,6,6,4,1),(7,5,2,2,2),(7,5,3,2,2),(7,5,3,3,2),(7,5,3,3,3),(7,5,4,
2,2),(7,5,4,3,2),(7,5,4,3,3),(7,5,4,4,2),(7,5,4,4,3),(7,5,4,4,4),(7,5,5,2,1),(7,
5,5,3,1),(7,5,5,4,1),(7,6,2,2,2),(7,6,3,2,2),(7,6,3,3,2),(7,6,3,3,3),(7,6,4,2,2)
,(7,6,4,3,2),(7,6,4,3,3),(7,6,4,4,2),(7,6,4,4,3),(7,6,4,4,4),(7,6,5,2,1),(7,6,5,
3,1),(7,6,5,4,1),(7,6,6,2,1),(7,6,6,3,1),(7,6,6,4,1),(7,7,2,2,2),(7,7,3,2,2),(7,
7,3,3,2),(7,7,3,3,3),(7,7,4,2,2),(7,7,4,3,2),(7,7,4,3,3),(7,7,4,4,2),(7,7,4,4,3)
,(7,7,4,4,4),(7,7,5,2,1),(7,7,5,3,1),(7,7,5,4,1),(7,7,6,2,1),(7,7,6,3,1),(7,7,6,
4,1),(7,7,7,2,1),(7,7,7,3,1),(7,7,7,4,1),(8,5,2,2,2),(8,5,3,2,2),(8,5,3,3,2),(8,
5,3,3,3),(8,5,4,2,2),(8,5,4,3,2),(8,5,4,3,3),(8,5,4,4,2),(8,5,4,4,3),(8,5,4,4,4)
,(8,5,5,2,1),(8,5,5,3,1),(8,5,5,4,1),(8,6,2,2,2),(8,6,3,2,2),(8,6,3,3,2),(8,6,3,
3,3),(8,6,4,2,2),(8,6,4,3,2),(8,6,4,3,3),(8,6,4,4,2),(8,6,4,4,3),(8,6,4,4,4),(8,
6,5,2,1),(8,6,5,3,1),(8,6,5,4,1),(8,6,6,2,1),(8,6,6,3,1),(8,6,6,4,1),(8,7,2,2,2)
,(8,7,3,2,2),(8,7,3,3,2),(8,7,3,3,3),(8,7,4,2,2),(8,7,4,3,2),(8,7,4,3,3),(8,7,4,
4,2),(8,7,4,4,3),(8,7,4,4,4),(8,7,5,2,1),(8,7,5,3,1),(8,7,5,4,1),(8,7,6,2,1),(8,
7,6,3,1),(8,7,6,4,1),(8,7,7,2,1),(8,7,7,3,1),(8,7,7,4,1),(8,8,2,2,2),(8,8,3,2,2)
,(8,8,3,3,2),(8,8,3,3,3),(8,8,4,2,2),(8,8,4,3,2),(8,8,4,3,3),(8,8,4,4,2),(8,8,4,
4,3),(8,8,4,4,4),(8,8,5,2,1),(8,8,5,3,1),(8,8,5,4,1),(8,8,6,2,1),(8,8,6,3,1),(8,
8,6,4,1),(8,8,7,2,1),(8,8,7,3,1),(8,8,7,4,1),(8,8,8,2,1),(8,8,8,3,1),(8,8,8,4,1)
,(9,2,2,2,2),(9,3,2,2,2),(9,3,3,2,2),(9,3,3,3,2),(9,3,3,3,3),(9,4,2,2,2),(9,4,3,
2,2),(9,4,3,3,2),(9,4,3,3,3),(9,4,4,2,2),(9,4,4,3,2),(9,4,4,3,3),(9,4,4,4,2),(9,
4,4,4,3),(9,4,4,4,4),(9,5,2,2,1),(9,5,3,2,1),(9,5,3,3,1),(9,5,4,2,1),(9,5,4,3,1)
,(9,5,4,4,1),(9,5,5,1,1),(9,6,2,2,1),(9,6,3,2,1),(9,6,3,3,1),(9,6,4,2,1),(9,6,4,
3,1),(9,6,4,4,1),(9,6,5,1,1),(9,6,6,1,1),(9,7,2,2,1),(9,7,3,2,1),(9,7,3,3,1),(9,
7,4,2,1),(9,7,4,3,1),(9,7,4,4,1),(9,7,5,1,1),(9,7,6,1,1),(9,7,7,1,1),(9,8,2,2,1)
,(9,8,3,2,1),(9,8,3,3,1),(9,8,4,2,1),(9,8,4,3,1),(9,8,4,4,1),(9,8,5,1,1),(9,8,6,
1,1),(9,8,7,1,1),(9,8,8,1,1),(9,9,2,1,1),(9,9,3,1,1),(9,9,4,1,1),(10,2,2,2,2),(1
0,3,2,2,2),(10,3,3,2,2),(10,3,3,3,2),(10,3,3,3,3),(10,4,2,2,2),(10,4,3,2,2),(10,
4,3,3,2),(10,4,3,3,3),(10,4,4,2,2),(10,4,4,3,2),(10,4,4,3,3),(10,4,4,4,2),(10,4,
4,4,3),(10,4,4,4,4),(10,5,2,2,1),(10,5,3,2,1),(10,5,3,3,1),(10,5,4,2,1),(10,5,4,
3,1),(10,5,4,4,1),(10,5,5,1,1),(10,6,2,2,1),(10,6,3,2,1),(10,6,3,3,1),(10,6,4,2,
1),(10,6,4,3,1),(10,6,4,4,1),(10,6,5,1,1),(10,6,6,1,1),(10,7,2,2,1),(10,7,3,2,1)
,(10,7,3,3,1),(10,7,4,2,1),(10,7,4,3,1),(10,7,4,4,1),(10,7,5,1,1),(10,7,6,1,1),(
10,7,7,1,1),(10,8,2,2,1),(10,8,3,2,1),(10,8,3,3,1),(10,8,4,2,1),(10,8,4,3,1),(10
,8,4,4,1),(10,8,5,1,1),(10,8,6,1,1),(10,8,7,1,1),(10,8,8,1,1),(10,9,2,1,1),(10,9
,3,1,1),(10,9,4,1,1),(10,10,2,1,1),(10,10,3,1,1),(10,10,4,1,1),(11,2,2,2,2),(11,
3,2,2,2),(11,3,3,2,2),(11,3,3,3,2),(11,3,3,3,3),(11,4,2,2,2),(11,4,3,2,2),(11,4,
3,3,2),(11,4,3,3,3),(11,4,4,2,2),(11,4,4,3,2),(11,4,4,3,3),(11,4,4,4,2),(11,4,4,
4,3),(11,4,4,4,4),(11,5,2,2,1),(11,5,3,2,1),(11,5,3,3,1),(11,5,4,2,1),(11,5,4,3,
1),(11,5,4,4,1),(11,5,5,1,1),(11,6,2,2,1),(11,6,3,2,1),(11,6,3,3,1),(11,6,4,2,1)
,(11,6,4,3,1),(11,6,4,4,1),(11,6,5,1,1),(11,6,6,1,1),(11,7,2,2,1),(11,7,3,2,1),(
11,7,3,3,1),(11,7,4,2,1),(11,7,4,3,1),(11,7,4,4,1),(11,7,5,1,1),(11,7,6,1,1),(11
,7,7,1,1),(11,8,2,2,1),(11,8,3,2,1),(11,8,3,3,1),(11,8,4,2,1),(11,8,4,3,1),(11,8
,4,4,1),(11,8,5,1,1),(11,8,6,1,1),(11,8,7,1,1),(11,8,8,1,1),(11,9,2,1,1),(11,9,3
,1,1),(11,9,4,1,1),(11,10,2,1,1),(11,10,3,1,1),(11,10,4,1,1),(11,11,2,1,1),(11,1
1,3,1,1),(11,11,4,1,1),(12,2,2,2,2),(12,3,2,2,2),(12,3,3,2,2),(12,3,3,3,2),(12,3
,3,3,3),(12,4,2,2,2),(12,4,3,2,2),(12,4,3,3,2),(12,4,3,3,3),(12,4,4,2,2),(12,4,4
,3,2),(12,4,4,3,3),(12,4,4,4,2),(12,4,4,4,3),(12,4,4,4,4),(12,5,2,2,1),(12,5,3,2
,1),(12,5,3,3,1),(12,5,4,2,1),(12,5,4,3,1),(12,5,4,4,1),(12,5,5,1,1),(12,6,2,2,1
),(12,6,3,2,1),(12,6,3,3,1),(12,6,4,2,1),(12,6,4,3,1),(12,6,4,4,1),(12,6,5,1,1),
(12,6,6,1,1),(12,7,2,2,1),(12,7,3,2,1),(12,7,3,3,1),(12,7,4,2,1),(12,7,4,3,1),(1
2,7,4,4,1),(12,7,5,1,1),(12,7,6,1,1),(12,7,7,1,1),(12,8,2,2,1),(12,8,3,2,1),(12,
8,3,3,1),(12,8,4,2,1),(12,8,4,3,1),(12,8,4,4,1),(12,8,5,1,1),(12,8,6,1,1),(12,8,
7,1,1),(12,8,8,1,1),(12,9,2,1,1),(12,9,3,1,1),(12,9,4,1,1),(12,10,2,1,1),(12,10,
3,1,1),(12,10,4,1,1),(12,11,2,1,1),(12,11,3,1,1),(12,11,4,1,1),(12,12,2,1,1),(12
,12,3,1,1),(12,12,4,1,1),(13,2,2,2,2),(13,3,2,2,2),(13,3,3,2,2),(13,3,3,3,2),(13
,3,3,3,3),(13,4,2,2,2),(13,4,3,2,2),(13,4,3,3,2),(13,4,3,3,3),(13,4,4,2,2),(13,4
,4,3,2),(13,4,4,3,3),(13,4,4,4,2),(13,4,4,4,3),(13,4,4,4,4),(13,5,2,2,1),(13,5,3
,2,1),(13,5,3,3,1),(13,5,4,2,1),(13,5,4,3,1),(13,5,4,4,1),(13,5,5,1,1),(13,6,2,2
,1),(13,6,3,2,1),(13,6,3,3,1),(13,6,4,2,1),(13,6,4,3,1),(13,6,4,4,1),(13,6,5,1,1
),(13,6,6,1,1),(13,7,2,2,1),(13,7,3,2,1),(13,7,3,3,1),(13,7,4,2,1),(13,7,4,3,1),
(13,7,4,4,1),(13,7,5,1,1),(13,7,6,1,1),(13,7,7,1,1),(13,8,2,2,1),(13,8,3,2,1),(1
3,8,3,3,1),(13,8,4,2,1),(13,8,4,3,1),(13,8,4,4,1),(13,8,5,1,1),(13,8,6,1,1),(13,
8,7,1,1),(13,8,8,1,1),(13,9,2,1,1),(13,9,3,1,1),(13,9,4,1,1),(13,10,2,1,1),(13,1
0,3,1,1),(13,10,4,1,1),(13,11,2,1,1),(13,11,3,1,1),(13,11,4,1,1),(13,12,2,1,1),(
13,12,3,1,1),(13,12,4,1,1),(13,13,2,1,1),(13,13,3,1,1),(13,13,4,1,1)]
 
Last edited:
  • #9
Amazing. And 450 is right.
 

1. What is meant by the "state" of a particle?

The state of a particle refers to its specific properties and characteristics at a given time, such as its position, momentum, and energy.

2. How is the energy of a particle related to its state?

The energy of a particle is determined by its state, as different states will have different levels of energy. For example, a particle with a higher momentum or speed will have a higher energy than a particle with a lower momentum.

3. Can the energy of a particle change without a change in its state?

No, the energy of a particle is directly linked to its state. Any change in energy would require a change in the particle's state, such as a change in position or velocity.

4. Is the energy of a particle constant?

No, the energy of a particle can change depending on its state. This is especially true for quantum particles, which can exist in multiple states and have varying levels of energy.

5. How is the energy of a particle measured?

The energy of a particle can be measured through various methods, such as using instruments like a calorimeter or by observing the effects of the particle's energy on its surroundings.

Similar threads

  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Quantum Physics
Replies
2
Views
2K
Replies
2
Views
653
Replies
1
Views
774
Replies
1
Views
561
Replies
1
Views
430
  • Quantum Interpretations and Foundations
Replies
13
Views
538
Replies
2
Views
616
  • Calculus and Beyond Homework Help
Replies
2
Views
267
Replies
2
Views
1K
Back
Top