Aircraft structure (thin walled closed section beam)

In summary, The position of the shear center S for a single cell, thin walled beam with horizontal axis of symmetry can be calculated by applying an arbitrary shear load through S and using the internal shear flow distribution equation. The shear center is located at a distance of 197.2 mm from the vertical through booms 2 and 3.
  • #1
sohaib
6
0
Figure shows the cross section of a single cell, thin walled
beam with the horizontal axis of symmetry. The direct stresses are carried
by the booms B1 to B4, while the walls are effective only in carrying shear
stresses. Assuming that the basic theory of bending is applicable, calculate
the position of the shear center S. The shear modulus G is the same for all walls.

Cell Area = 135000 mm^2
Boom Areas B1 = B4 = 450 mm^2, B2 = B3 = 550 mm^2

Wall Length(mm) Thickness(mm)
12,34 500 0.8
23 580 1.0
41 200 1.2

Ans: 197.2 mm from vertical through booms 2 and 3.
 

Attachments

  • 1.JPG
    1.JPG
    13.7 KB · Views: 1,124
Engineering news on Phys.org
  • #2
And so far you have done... ? If you know how to solve one of these you know how to solve them all as I remember.
 
  • #3
i was looking for the approach i should take to solve the problem... iam not here to find out the entire solution because i know u (aero stud) can't solve it anyway...
 
  • #4
LOL are you studying engineering or psychology ? lol
Those are the rules - what's the point of just telling you the answer, the shear centre is where the moment is zero so use that for every section and it's moment and you can find it. I studied this stuff a year ago, I think maybe a tiny bit did sink in... lol You could at least google it, you lazy shrink... :wink:
 
  • #5
U are the most lazy person i know in this world and have so much
free time that u are writing such big replies rather than answering the question. So sick and so pathetic...

Anywayz, i have figure out the answer myself of my question no thanks to u... Anywayz, iam off to solving the next question...
lolz... ;)
 
  • #6
I recently asked the above mentioned question on this forum...

I have figured out the answer myself to this question... So iam posting the way to solve this problem so it might be helpful to anyone who is having trouble solving it...

First of all see that the shear center S lies on the horizontal axis of symmetry, the x axis. Therefore what we have to do is to apply an arbitrary shear load Sy through S. The internal shear flow distribution is given by eq. 9.80 (aircraft structure, thg megson). and since we have
Ixy = 0
Sx =0
and tD=0
Calculate Ixx.
Calculate qb23, qb34, qb41

note that qb23 = 0
The value of the shear flow at the cut is obtained by using eq. 9.47 .
Calculate qs,0

Now take moments about O we have,
SyEs = 2x0.61x10^-3Syx500x100 + 2.86x10^-3Syx200x500

Solve this, we have
Es = 197.2 mm
 

What is an aircraft structure?

An aircraft structure refers to the physical framework or skeleton of an aircraft that supports the weight of the aircraft and withstands the stresses and forces of flight.

What is a thin-walled closed section beam?

A thin-walled closed section beam is a type of structural element that is commonly used in aircraft construction. It is a lightweight beam with a hollow cross-section, designed to provide high strength and stiffness while minimizing weight.

How are thin-walled closed section beams used in aircraft construction?

Thin-walled closed section beams are used in various parts of an aircraft's structure, such as the wings, fuselage, and tail. They are typically used for longer, straight sections that require high strength and stiffness, such as the main wing spar.

What materials are commonly used for thin-walled closed section beams in aircraft?

The most commonly used materials for thin-walled closed section beams in aircraft are aluminum alloys and carbon fiber composites. These materials offer a high strength-to-weight ratio and can withstand the stresses and forces of flight.

How are thin-walled closed section beams designed and analyzed for use in aircraft?

Thin-walled closed section beams are designed and analyzed using principles of structural mechanics and finite element analysis. Engineers consider factors such as material properties, loading conditions, and safety factors to ensure the beams can withstand the expected stresses and forces in flight.

Similar threads

  • Mechanical Engineering
Replies
1
Views
2K
  • Mechanical Engineering
Replies
16
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
734
  • General Engineering
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
3K
  • Engineering and Comp Sci Homework Help
Replies
11
Views
3K
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
4
Views
3K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
2K
Replies
4
Views
10K
Back
Top