Register to reply

How can a transcendental number be a base?

by p1l0t
Tags: base, number, transcendental
Share this thread:
p1l0t
#1
Jul10-14, 10:38 AM
P: 58
I was recently told that base Pi can only be speculation because it irrational. However the Euler formula uses e. e is the base of the natural log and yet it is a transcendental. So is it or is it not possible for an irrational and/or transcendental number to be used as a base?
Phys.Org News Partner Mathematics news on Phys.org
Professor quantifies how 'one thing leads to another'
Team announces construction of a formal computer-verified proof of the Kepler conjecture
Iranian is first woman to win 'Nobel Prize of maths' (Update)
HallsofIvy
#2
Jul10-14, 02:10 PM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,488
I think you are confusing two different uses of the word "base". We say that our usual number system is "base 10" because "1232.3" means [tex]1\times 10^3+ 2\times 10^2+ 3\times 10+ 2\times 10^0+ 3\times 10^{-1}[/tex]. And "binary" is "base 2" because 1232.3 (base 2) means [tex]1\times 2^3+ 2\times 2^2+ 3\times 2+ 2\times 2^0+ 3\times 2^{-1}[/tex] which, in base 10, would be 8+ 8+ 6+ 2+ 1/2= 24.5.

But a number being the "base" of an exponential is very different. we can take any (positive) number as a base (I put 'positive' in parentheses because while, for many values of x, a negative number to the x power is perfectly well defined, there are some values of x such that a negative number or 0 to the x power is not defined). For example, for x= 2, [itex]\pi^2[/itex]= 9.8696044010893586188344909998762...

And I think you may be misinterpreting "speculation". Of course, because [itex]\pi[/itex] is an irrational number, it cannot be written as a finite number of decimal places and cannot be written as a fraction with integer numerator and denominator so I cannot write it or [itex]\pi^2[/itex] or [itex]\pi[/itex] to any other power as a finite number or decimal places. I don't know what comes after that "09998762" that is indicated by the "...". I could theoretically use a calculator that holds a greater number of decimal places or use a computer program to extend to as many decimal places as I want but I would never get the entire value of [itex]\pi^2[/itex]. But whether or not I can write it in a specific way, I know that [itex]\pi^2[/itex] is a specific number.

Similarly, although given a number a, I cannot actually calculate [itex]a_0[/itex], [itex]a_1[/itex], [itex]a_2[/itex], ... so that [itex]a= a_0\pi^0+ a_1\pi^1+ a_2\pi^2+ \cdot\cdot\cdot[/itex] but I know that such number exist so that I can, in fact, write any number in "base [itex]\pi[/itex]".
DaleSpam
#3
Jul10-14, 05:23 PM
Mentor
P: 17,200
Quote Quote by p1l0t View Post
I was recently told that base Pi can only be speculation because it irrational. However the Euler formula uses e. e is the base of the natural log and yet it is a transcendental. So is it or is it not possible for an irrational and/or transcendental number to be used as a base?
As Halls said, you should be aware that the same English word often refers to multiple distinct concepts. "Base" is used as a description of different number representations (e.g. binary numbers are base 2, hexadecimal numbers are base 16). "Base" is also used to denote the number which is raised to a power in exponentiation.

The previous discussion (and the first sentence quoted here) referred to the first meaning. In "base N", the N must be a natural number. The Euler formula and so forth use e as the base referring to the second meaning.

jbriggs444
#4
Jul10-14, 07:34 PM
P: 928
How can a transcendental number be a base?

Quote Quote by p1l0t View Post
I was recently told that base Pi can only be speculation because it irrational. However the Euler formula uses e. e is the base of the natural log and yet it is a transcendental. So is it or is it not possible for an irrational and/or transcendental number to be used as a base?
In a standard positional notation system, the base (or "radix") must be a positive integer greater than 1 and all of the digits must be non-negative integers less than the base. However, non-standard notations exist.

http://en.wikipedia.org/wiki/Non-integer_representation
skiller
#5
Jul11-14, 03:59 AM
P: 234
Quote Quote by HallsofIvy View Post
And "binary" is "base 2" because 1232.3 (base 2) means [tex]1\times 2^3+ 2\times 2^2+ 3\times 2+ 2\times 2^0+ 3\times 2^{-1}[/tex] which, in base 10, would be 8+ 8+ 6+ 2+ 1/2= 24.5.
Well, that's the first time I've seen a 2 and a 3 in binary!

In any case, your arithmetic is wrong. Please read your posts before posting!
p1l0t
#6
Jul11-14, 08:14 AM
P: 58
Quote Quote by skiller View Post
Well, that's the first time I've seen a 2 and a 3 in binary!

In any case, your arithmetic is wrong. Please read your posts before posting!
Actually you are right binary would be all 1s and 0s but I knew what he meant. I actually do know the differences between the types of bases too but I did incorrectly assume the wrong type of base. I even thanked Halls for his answer but maybe it does need an edit.
HallsofIvy
#7
Jul11-14, 08:52 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,488
I never was any good at arithmetic! Thanks, skiller, for that correction. It is now too late to edit so I can't pretend I didn't make that foolish mistake.


Register to reply

Related Discussions
Is Pi a rational number in any other base besides base Pi? General Math 19
New irrational number to develop transcendental operators Linear & Abstract Algebra 2
Base changing for transcendental numbers Linear & Abstract Algebra 6
Is this number algebraic or transcendental? Linear & Abstract Algebra 13
Can the probability of an event ever be a transcendental number? Set Theory, Logic, Probability, Statistics 11