Register to reply

Matrix element for direct reactions

by Silversonic
Tags: element, matrix, reactions
Share this thread:
Mar10-14, 09:06 PM
P: 129
I apologise since I already have a question on this board, but I've been stuck for a good few hours understanding exactly how this has been done. The differential cross section for a direct reaction from [itex]\alpha[/itex] to [itex]\beta[/itex] is given by

[itex] \frac{d\sigma}{d\Omega} = f(k,k')|T_{\beta \alpha}|^2 [/itex]

f(k,k') is just a constant dependent on the initial and final momentums. For a one-nucleon transfer, e.g. A(B,C)D where B may be a deuteron and C a proton, [itex] T_{\alpha \beta} [/itex] is given by

[itex] T_{\alpha \beta} \int e^{-i\mathbf{k}\cdot\mathbf{r_{\beta}}} \int \psi^*_C \psi^*_D V \psi_A \psi_B d\tau e^{i\mathbf{k}\cdot\mathbf{r_{\alpha}}} d^3\mathbf{r_{\alpha}} d^3\mathbf{r_{\beta}} [/itex]

[itex] \alpha [/itex] represents the relative vector distance between incident particle A and target B
[itex] \beta [/itex] ^^ projectile C and residual nucleus D

V is the potential responsible for the direct reaction process.

[itex] d\tau [/itex] is the integral over all internal coordinates.

For reference Bertulani (nuclear physics in a nutshell) chapter 11.1 and Wong (intro to nuclear) chapter 8.3 focus on this.

There are three approximations then used:
(1) [itex] r_{\alpha} = r_{\beta} = r [/itex] because of the short range of [itex] V [/itex].
(2) [itex] V = V_0\delta(r-R) [/itex] because the interaction is short ranged, but below a certain distance the formation of a compound nucleus is more favourable.
(3) For a (d,p) reaction, which is what we're considering, the neutron is transferred to a single particle state (M=0) of B. i.e. [itex] \psi_D = \psi_B \phi_n = \psi_B f(r) Y_{L0}(\theta,\phi) [/itex]

What I'm then confused with is that I'm told these approximations are used to obtain

[itex] T_{\alpha \beta} = V_0\int e^{i (\mathbf{k - k'}) \cdot r} Y_{L0}(\theta,\phi)^*\delta(r-R) d^3\mathbf{r} [/itex]

I think some factors were left out because we're interesting in really the angular dependence of the differential cross section. I've tried getting to this myself, but I'm a bit confused as to what is a function of what variables for integration, and I also have no idea how [itex] Y_{L0} [/itex] makes its way outside of the integral for [itex] d\tau [/itex]. This is as far as I can get subbing in and using the approximations above;

[itex] T_{\alpha \beta} = V_0 \int e^{i (\mathbf{k - k'})\cdot\mathbf{r}} \int \psi^*_C \psi^*_D \delta(r-R) \psi_A \psi_B d\tau d^3\mathbf{r} [/itex]

So I guess all I need is

[itex] \int \psi^*_C \psi^*_D \psi_A \psi_B d\tau = Y_{L0}(\theta,\phi)[/itex]

But all I can show is;

[itex] \int \psi^*_C \psi^*_D \psi_A \psi_B = \int \psi^*_C \psi^*_B f(r')Y_{L0}(\theta',\phi') \psi_A \psi_B d\tau [/itex]

Then that's really as far as I can get. I don't understand how this results in [itex] Y_{L0} [/itex] when we're integrating over [itex] d\tau [/itex] - all internal coordinates of those wavefunctions. Anyone think they know?
Phys.Org News Partner Physics news on
Physicists discuss quantum pigeonhole principle
First in-situ images of void collapse in explosives
The first supercomputer simulations of 'spin?orbit' forces between neutrons and protons in an atomic nucleus

Register to reply

Related Discussions
Area element, volume element and matrix Calculus 2
Problem in finite element method using direct stiffness method Engineering, Comp Sci, & Technology Homework 2
Determinant of 3x3 Matrix without direct evaluation Calculus & Beyond Homework 5
Matrix Element Quantum Physics 3
Direct estimation of leakage flux at a synchronous generator using a finite-element Electrical Engineering 1