## Irreducibility of Polynomial...part deux...

Ok I promise this time it is not a homework type question.

If someone could direct with a name of a theorem here, then I'll go ahead and google it, otherwise have a look. I have a chunk of notes that I'm confused about. We're not shown any proofs here or any explanations, just what is seen. It was talking about in somewhat of a "mention in passing" way so maybe I am not supposed to look too deep into it and just accept the results. Here it is...

Basically we are told that if we have a polynomial f in Z[x], if f = gh where g and h belong t Q[x], it can be shown that the coefficients can be selected to be in Z[x]. We told this is Gauss' Lemma. OK. Then it goes, we change the given polynomial into the corresponding polynomial that has the coefficients changed into elements of a prime congruence class. g and h are defined the same, then "f-bar" = "g-bar" times "h-bar". If p prime is chosen right, it shows that if "f-bar" is irreducible, then f is irreducible.

I'll start by asking does anyone know what this is describing, and if we have a name for it?
 PhysOrg.com science news on PhysOrg.com >> King Richard III found in 'untidy lozenge-shaped grave'>> Google Drive sports new view and scan enhancements>> Researcher admits mistakes in stem cell study
 Ok just found it actually. Case closed -.-
 Recognitions: Homework Help Science Advisor you might look at some of my free algebra notes on my website. see my public profile for my web address under contact info. or just click on my name at left and the pulldown menu gives a link to it.

## Irreducibility of Polynomial...part deux...

Thanks for the suggestion, roy :) . I'll keep this mind.