What to expect in a Reactor physics and engineering class

In summary, The conversation discusses a nuclear engineering concentration offered at the school and the topics covered in a reactor course. These include nuclear physics, neutron interactions, fission process, diffusion theory, and various reactor configurations. The course also covers reactor kinetics and reactivity control. The recommended textbook for the course is "Nuclear Reactor Analysis" by J. J. Duderstadt and J. R. Lamarsh, which is a common reference in reactor physics courses.
  • #1
koab1mjr
107
0
Hi

My school started a nuclear engineering concentration in the ME/CHE department for the spring and I just wanted to know what are the topics covered typically in a reactor course and what stuff should I brush up on to be sharp for the class?

Thanks in advance.
 
Engineering news on Phys.org
  • #2
Does one know the textbook for the class?

Typically, one covers a brief review of nuclear physics. Then one covers neutrons interactions with matter and the concept of cross-sections. Following this, one explores the fission process and then neutron diffusion. One might be exposed to transport theory from which diffusion theory is developed.

With familiarity with neutron diffusion theory, one then explore moderation without absorption and then with absorption (sink) and fission (source). Since commercial reactors, and most other reactors in use, are LWRs, one will likely cover low-energy (thermal) neutron systems. Fast reactors are usually covered later in a separate course.

The latter part of the course would then cover various reactor configurations to which one applies the diffusion theory. One would probably start with homogeneous systems and then move on to heterogenous systems (fuel is separate for coolant and moderator). Likely the course finishes with reactor kinetics and reactivity control.
 
  • #3
My introduction course was very similar to Astronuc's description with one main exception. After covering homogenous and heterogenous reactors. We then started discussing the merits of many different designs form technical and safety standpoints (reactivity coefficents, inherent and active safty, LOCA's). We even discuessed a small amount of reactor dynamics and control theory.

In my opinion the most demanding part of the course came from the heavy math involved. There was everything from ODE's, PDE's, coupled systems and control theory. If you do want to get a head start, I would suggest learning to solve diffusion equations with source and sink terms for various geometries, although depending on the intesity of the course this may not be emphasized.
 
  • #4
In an introductory course, a lot of the work will be analytical.

From my experiences, the most important thing to know is how to solve ODE's and PDE's. But to be honest, analytical problems in nuclear engineering aren't very mathematically diverse. Said problems will always fall under...

1st order ODE, which can always be solved by integrating factor (ref. radioactive decay, slowing down theory)
2nd order ODE, which usually comes in the Helmholtz form (ref. diffusion problems)
Simple PDE's, which can be solved by separation of variables

And they aren't very physically diverse either, as most equations will arise from simple conservation principles.

Check out "Nuclear Reactor Analysis" by J. J. Duderstadt and J. R. Lamarsh's two nuclear books. These are common references in reactor physics courses.
 
  • #5
sounds good. The textbook we are using is the intro to reactor theory by J. R. Lamarsh
its an old book from like 1966
 
  • #6
koab1mjr said:
sounds good. The textbook we are using is the intro to reactor theory by J. R. Lamarsh
its an old book from like 1966

It may be old but it is the 'classic' that is almost always used for the intro course. The basics haven't really changed since 1966. There are probably 20 copies of this book within 100 feet of where I'm sitting (offices of a large US based reactor vendor).
 

1. What is the purpose of a Reactor physics and engineering class?

A Reactor physics and engineering class is designed to provide students with a comprehensive understanding of the principles and concepts that govern nuclear reactors. This includes topics such as nuclear reactions, reactor design, and safety protocols.

2. What are some of the key topics covered in a Reactor physics and engineering class?

Some of the key topics covered in a Reactor physics and engineering class include nuclear reactions, reactor kinetics, neutron transport theory, reactor dynamics, reactor fuel management, and reactor safety and control.

3. What are the prerequisites for taking a Reactor physics and engineering class?

Typically, students are required to have a strong background in mathematics, physics, and thermodynamics before taking a Reactor physics and engineering class. Some universities may also require students to have completed introductory courses in nuclear engineering or nuclear physics.

4. How is a Reactor physics and engineering class taught?

A Reactor physics and engineering class is typically taught through a combination of lectures, laboratory experiments, and hands-on projects. Students may also participate in group discussions and simulations to better understand complex concepts and principles.

5. What career opportunities are available for students who take a Reactor physics and engineering class?

Graduates from a Reactor physics and engineering class can pursue careers in various industries, including nuclear power plants, government agencies, research institutions, and consulting firms. They may work as nuclear engineers, reactor operators, radiation protection specialists, or nuclear safety analysts.

Similar threads

  • Nuclear Engineering
Replies
1
Views
1K
Replies
13
Views
2K
  • Nuclear Engineering
Replies
9
Views
2K
  • Nuclear Engineering
Replies
7
Views
4K
  • Nuclear Engineering
Replies
2
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
  • Nuclear Engineering
Replies
8
Views
2K
  • Sci-Fi Writing and World Building
Replies
22
Views
2K
Replies
11
Views
1K
Back
Top