arc length of a regular parametrized curve


by tuggler
Tags: curve, length, parametrized, regular
tuggler
tuggler is offline
#1
Aug31-13, 07:22 PM
P: 45
Given [tex]t\in I[/tex]the arc length of a regular parametrized curve [tex]\alpha : I \to \mathbb{R}^3[/tex] from the point [tex]t_0[/tex] is by definition [tex]s(t) = \int^t_{t_0}|\alpha'(t)|dt[/tex] where [tex]|\alpha'(t)| = \sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}[/tex] is the length of the vector [tex]\alpha'(t).[/tex] Since [tex]\alpha'(t) \ne 0[/tex] the arc length [tex]s[/tex] is a differentiable function of and [tex]ds/dt = |\alpha'(t)|.[/tex]

This is where I get confused.

It can happen that the parameter [tex]t[/tex]is already the arc length measured from some point. In this case, [latex]ds/dt = 1 =|\alpha'(t)|[/tex]. Conversely, if [tex]|\alpha'(t)| = 1[/tex] then [tex]s = \int_{t_0}^t dt = t - t_0.[/tex]

How did they get that it equals 1? I am not sure what they are saying?
Phys.Org News Partner Mathematics news on Phys.org
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
Pseudo-mathematics and financial charlatanism
tuggler
tuggler is offline
#2
Aug31-13, 07:23 PM
P: 45
Opps, I am in the wrong thread. How can I delete this?
mathman
mathman is offline
#3
Sep1-13, 03:19 PM
Sci Advisor
P: 5,935
Quote Quote by tuggler View Post
Given [tex]t\in I[/tex]the arc length of a regular parametrized curve [tex]\alpha : I \to \mathbb{R}^3[/tex] from the point [tex]t_0[/tex] is by definition [tex]s(t) = \int^t_{t_0}|\alpha'(t)|dt[/tex] where [tex]|\alpha'(t)| = \sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}[/tex] is the length of the vector [tex]\alpha'(t).[/tex] Since [tex]\alpha'(t) \ne 0[/tex] the arc length [tex]s[/tex] is a differentiable function of and [tex]ds/dt = |\alpha'(t)|.[/tex]

This is where I get confused.

It can happen that the parameter [tex]t[/tex]is already the arc length measured from some point. In this case, [latex]ds/dt = 1 =|\alpha'(t)|[/tex]. Conversely, if [tex]|\alpha'(t)| = 1[/tex] then [tex]s = \int_{t_0}^t dt = t - t_0.[/tex]

How did they get that it equals 1? I am not sure what they are saying?
If t is arc length (that is: s = t), then ds/dt = 1. If this doesn't answer your question you need to elaborate.


Register to reply

Related Discussions
Arclength Introductory Physics Homework 1
Arclength of exp from 0 to 1 Calculus & Beyond Homework 3
Arclength Calculus & Beyond Homework 0
Arclength TI-89 General Math 5
Arclength Introductory Physics Homework 8