Solving Problems in a Class Missed: Limits, Isolated Points & Cauchy Sequences

In summary, the conversation discusses problems related to open and closed sets, isolated points, and limit points in a general Real Analysis course. The first problem asks for the limit points, whether B is a closed or open set, and if it contains any isolated points. The second problem is a proof by contradiction for isolated points. And the third problem is a proof for a set being closed if and only if every Cauchy sequence contained in the set has a limit that is also an element of the set. The conversation also mentions the professor discussing examples of the first problem in class.
  • #1
rbzima
84
0
This is review from class the other day that I managed to miss because of illness and I was wondering if someone could explain how to go about solving these problems:

#1
Let

[tex]B = \left\{ \frac{(-1)^nn}{n+1}:n = 1,2,3,...\right\}[/tex]

Find the limit points of B
Is B a closed set?
Is B an open set?
Does B contain any isolated points?
Find [tex]\overline{B}[/tex].

#2
Let [tex]a \in A[/tex]. Prove that a is an isolated point of A if and only if there exists an [tex]\epsilon[/tex] neighborhood [tex]V_\epsilon(a)[/tex] such that [tex]V_\epsilon(a) \bigcap A = \left\{a\right\}[/tex].

#3 - This is a proof the class worked on:
A set [tex]F \subseteq \texttt{R}[/tex] is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.

This is all that was talked about according to the professor, and there were some other examples shown of the first problem. I suppose that since I wasn't there in class, I have less of an edge than those who were, so I'd love to see how and more precisely why things work the way they do. Help would be greatly appreciated!
 
Physics news on Phys.org
  • #2
well I don't want to do you're homework for you so I'll give you some hints/

#1
obviously we want to use the definition of an open/closed set. for every point b in B, does there exist a neighbourhood contained in B. (answer - yes. now you have to show it)
As for isolated points, is there a neighbourhood (or an open ball) that around any point b in B that does not contain any other points in B? (no) This is almost never the case. A good example though is the discrete set which is entirely made up of isolated points.

sorry i forgot what[tex]\overline{B}[/tex] means. Cover?

#2 easy. proof by contradiction.

#3 read your text:
if I recall there are two main points. The first seems mundane, but is important
The following is NT a proof:
i. Assume that F is closed. if {f_j} is a cauchy sequence in R, then it must have a limit f because R is complete. we then show that s is in R. if f is not in F it means that f is not the limit point of f_j.
ii. Assume every cauchy sequence in F has a limit in F. we prove by contradiction. if F were not closed then the complement (R\F) would not be open and then we show that f_j would converge to some point in the closed set R\F. Here lies the contradiction. Hence F must be closed.
You should easily be able to find a proof on the web somewhere. google ["is closed if and only if every cauchy sequence" proof]

RBZIMA, what class is this for? I want to be helpful without giving away too much. this sounds like my second anal course which was in our 3rd year. Our intro to anal course was in our second year and didn't involve open sets and the like, just epsilon/delta mostly.

i can give more detail if neccessary
 
  • #3
grmnsplx said:
well I don't want to do you're homework for you so I'll give you some hints/

#1
obviously we want to use the definition of an open/closed set. for every point b in B, does there exist a neighbourhood contained in B. (answer - yes. now you have to show it)
As for isolated points, is there a neighbourhood (or an open ball) that around any point b in B that does not contain any other points in B? (no) This is almost never the case. A good example though is the discrete set which is entirely made up of isolated points.

sorry i forgot what[tex]\overline{B}[/tex] means. Cover?

#2 easy. proof by contradiction.

#3 read your text:
if I recall there are two main points. The first seems mundane, but is important
The following is NT a proof:
i. Assume that F is closed. if {f_j} is a cauchy sequence in R, then it must have a limit f because R is complete. we then show that s is in R. if f is not in F it means that f is not the limit point of f_j.
ii. Assume every cauchy sequence in F has a limit in F. we prove by contradiction. if F were not closed then the complement (R\F) would not be open and then we show that f_j would converge to some point in the closed set R\F. Here lies the contradiction. Hence F must be closed.
You should easily be able to find a proof on the web somewhere. google ["is closed if and only if every cauchy sequence" proof]

RBZIMA, what class is this for? I want to be helpful without giving away too much. this sounds like my second anal course which was in our 3rd year. Our intro to anal course was in our second year and didn't involve open sets and the like, just epsilon/delta mostly.

i can give more detail if neccessary

This is for a general Real Analysis course at my college. We are a relatively small college that doesn't offer many variations of Analysis, just the basics.

Thanks for the help though. I feel a little behind because I missed a day last week, but we'll see how things go.
 
  • #4
grmnsplx said:
well I don't want to do you're homework for you so I'll give you some hints/

#1
obviously we want to use the definition of an open/closed set. for every point b in B, does there exist a neighbourhood contained in B. (answer - yes. now you have to show it)
As for isolated points, is there a neighbourhood (or an open ball) that around any point b in B that does not contain any other points in B? (no) This is almost never the case. A good example though is the discrete set which is entirely made up of isolated points.

sorry i forgot what[tex]\overline{B}[/tex] means. Cover?

How did you decide B is open? What definition of open are you using?

Assuming the usual topology on the real numbers and considering B, B is certainly not open in the topology because every neighbourhood of a point in the reals must contain an irrational number, but all the numbers in B are rational, so no neighborhood of a point in B can be contained in B unless we are considering a topology different from the usual on on the reals.

rbizma: What is the definition of closed you are using? If it is that a closed set contains all of its contact points then is B closed or not?
 
  • #5
d_leet
you are exactly right. clearly I was a bit too quick to answer
B would be open in Q (correct?) but not in R

B is not open in R because I can always find points between any two points in B which are not in B. Namely, irrationals

Now, the question remains "is B closed?" That is to say, "does it contain all of it's limit points. RBZIMA, I think you can answer that.
 

1. What are limits in mathematics?

Limits are a fundamental concept in mathematics that refers to the behavior of a function as its input approaches a certain value. It describes the value that a function is approaching, rather than the value it is actually at. Limits are often used to solve problems involving infinite and infinitesimal quantities.

2. How are limits used in solving problems in a class missed?

Limits are used to analyze the behavior of a function that was missed in a class. They can help determine the value of a function at a certain point, or to find the maximum or minimum value of a function. Limits can also be used to determine the continuity and differentiability of a function at a certain point.

3. What are isolated points in mathematics?

An isolated point in mathematics refers to a point on a graph or function that is not connected to any other points around it. This means that the function is undefined at that particular point, and there is a discontinuity in the graph. Isolated points can also be referred to as holes or gaps in a function.

4. How do you identify Cauchy sequences?

A Cauchy sequence is a sequence of numbers in which the terms become arbitrarily close to each other as the sequence progresses. To identify a Cauchy sequence, you need to check if the difference between two consecutive terms becomes smaller and smaller as the sequence progresses. If this is the case, then the sequence is a Cauchy sequence.

5. How are Cauchy sequences used in solving problems in a class missed?

Cauchy sequences are used to solve problems involving limits and continuity. They are also used in real analysis to prove the convergence or divergence of a series. In a class missed, they may be used to determine the convergence of a particular sequence or to prove that a function is continuous at a certain point.

Similar threads

Replies
9
Views
882
  • Calculus and Beyond Homework Help
Replies
1
Views
711
Replies
11
Views
976
Replies
16
Views
2K
  • Calculus
Replies
3
Views
1K
Replies
1
Views
139
  • Calculus and Beyond Homework Help
Replies
28
Views
2K
Back
Top