Number of solutions of a nonlinear differential equation.

In summary, there are three solutions to the Riccati equation, which can be written as a linear combination of two solutions. The general solution is a linear combination of these three solutions.
  • #1
arroy_0205
129
0
As far as I know, for an n-th order homogeneous linear differential equation, there are n number of linearly independent solutions and the general solution to the equation is a linear combination of them.
In the case of nth order homogeneous non-linear differential equation can it be shown that there are n number independent solutions? Can anybody tell me where I can find details of this? In case there are n number of independent solutions, I am not sure how to write the general solution. superposition principle will not hold. So what will be be the general solution? The degree of equation is one.
 
Last edited:
Physics news on Phys.org
  • #2
No, it can't. In fact, the whole idea of "independent solutions" or "independence" itself comes from Linear Algebra and only applies to linear equations.
 
  • #3
So how many solutions would there be to a nonlinear DE?
 
  • #4
That depends very strongly on the specific non-linear equation!
 
  • #5
Sorry, I meant to say, for an "nth order non-linear DE".
 
  • #6
OK, so that means even for a second order nonlinear differential equation there may be 0/1/2 (or may be even more than 2, though not likely) solutions but there is no way to tell that (just by looking at the equation). On the contrary for any given linear 2nd order DE we know there are exactly 2 solutions.
 
  • #7
We know that every solution can be written as a linear combination of two independent solutions. That's very different from saying "there are exactly 2 solutions".
 
  • #8
Defennder said:
Sorry, I meant to say, for an "nth order non-linear DE".

Some of those DEs might not even have a "nice" that is closed form solution. You might be interested in reading a few Dynamical System texts as they show how one can look at DEs by examining fixed points and their stability (as well as limit cycles, etc.) It builds quite nicely into Chaos Theory, Check out Strogatz's book for a nice, gentle introduction to the matter.
 
  • #9
I wasn't referring to the "nice" form of the solution. But can we even tell how many solutions there'll be for a nth order non-linear DE? And why doesn't the concept of linear independence apply here? Couldn't we just use the Wronskian to determine how many of them are linearly independent?
 
  • #10
Linear indepence doesn't apply here because the equation is not linear!

Linear indepence is important in dealing with linear equations because of the fact that the set of solutions to a homogeneous nth order differential equation for a vector space of dimension n. That is why any solution to an nth order homogeneous differential equation can be written as a linear combination of n independent solutions: they form a basis for the vector space.
 
  • #11
Does a concept of non-linearly combination of solutions makes any sense in trying to find a general solution for a non linear DE?
 
  • #12
matematikawan said:
Does a concept of non-linearly combination of solutions makes any sense in trying to find a general solution for a non linear DE?
Doesn't really,as far as I know
.
 
  • #13
Ok here is an example of my practise. I have a non-linear ODE of 3rd order (highest derivative is third). I've found a solution that depends on 3 constants which can be chosen at will. Does that mean I've found the most general solution of that ODE ?

Here I changed the original question from 'how many independent solutions of nonlinear ODE' to 'how many free constants there are in the solution of nonlinear ODE'. Can the new question be answered with certainty?
 
  • #14
zoki85 said:
Doesn't really,as far as I know
.

I do came across a non-linear DE (Riccati equation) which has a nonlinear superposition formula.
It goes something this.

If y1(x) , y2(x) and y3(x) are any three distict particular solutions of the Riccati equation and c is a constant, then the general solution is

[tex] \frac{cy_2(y_3-y_1)-y_1(y_3-y_2)}{c(y_3-y_1)-(y_3-y_2)} [/tex]

I understand that this come naturally from Lie's Theorem which I don't understand.
 

1. What is a nonlinear differential equation?

A nonlinear differential equation is a mathematical equation that describes the relationship between a function and its derivatives in terms of the function itself. Unlike linear differential equations, which have only one term with the highest power of the dependent variable, nonlinear differential equations have multiple terms with varying powers of the dependent variable.

2. How do you determine the number of solutions for a nonlinear differential equation?

The number of solutions for a nonlinear differential equation depends on the order of the equation and the initial conditions given. Generally, nonlinear differential equations have multiple solutions, and the exact number of solutions cannot be determined without solving the equation or using numerical methods.

3. Can a nonlinear differential equation have an infinite number of solutions?

Yes, a nonlinear differential equation can have an infinite number of solutions. This can occur when the equation has a periodic or chaotic behavior, where the solutions repeat indefinitely. In this case, the number of solutions cannot be determined precisely.

4. What is the difference between a linear and a nonlinear differential equation?

The main difference between a linear and a nonlinear differential equation is the form of the equation. Linear differential equations have terms with only the dependent variable and its derivatives, while nonlinear differential equations have additional terms involving the function itself. This leads to different behaviors and methods for solving the equations.

5. Are there any general techniques for finding solutions to nonlinear differential equations?

There are various techniques for solving nonlinear differential equations, such as separation of variables, substitution, and power series methods. However, there is no general method that can be applied to all types of nonlinear differential equations. Finding solutions often requires creativity and a combination of different techniques.

Similar threads

  • Differential Equations
Replies
3
Views
2K
  • Differential Equations
Replies
3
Views
1K
  • Differential Equations
Replies
1
Views
1K
Replies
2
Views
2K
  • Differential Equations
Replies
7
Views
380
Replies
6
Views
1K
Replies
3
Views
959
  • Differential Equations
Replies
1
Views
1K
  • Differential Equations
Replies
4
Views
2K
  • Differential Equations
Replies
2
Views
972
Back
Top