Finding Generators for Cyclic Groups Z(6), Z(8), and Z(20)

In summary: I thought that the identity of Z(6) would be 0. So 1 and 5 are generators of Z(6) because they both cover the whole group?In summary, the generators of Z(6) are 1 and 5 because they produce all elements of the group through multiplication, while the other elements do not cover the whole group. Similarly, for Z(8) and Z(20), the generators are 1 and 5 as well because they produce all elements of the group through multiplication, while the other elements do not cover the whole group.
  • #1
Benzoate
422
0

Homework Statement



Find all generators of Z(6), Z(8) , and Z(20)

Homework Equations





The Attempt at a Solution



I should probably list the elements of Z(6), Z(8) and Z(20) first.

Z(6)={0,1,2,3,4,5}
Z{8}={0,1,2,3,4,5,6,7}
Z(20)={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}

perhaps taking the divisors of Z(sub 6) , Z(sub 8) and Z(sub 20)

For 6 , the divisors are 1,2,3,and 6
For 8 , the divisors are 1,2,4,and 8
For 20 , the divisors are 1,2,4,5, and 20
any element in <..> represent the generater
Z(6), its generators are <a^1> , <a^2> , <a^3> and <a^6>
<a^1> ={0,1,2,3,4,5}
<a^2>={0,2,4}
<a^3>={0,3}
and <a^6>={0}
<a^1> has order 6, <a^2> has order 3 ,<a^3> has order 2 and <a^6> has order 1.

the back of my book says the generators for generator 6 are 1 and 5. I don't understand why generator 6 is 1 and 5.
 
Physics news on Phys.org
  • #2
Do you understand what a "generator" is? Divisors of 6, except for 1 itself, can't be generators.
Your "(6), its generators are <a^1> , <a^2> , <a^3> and <a^6>
<a^1> ={0,1,2,3,4,5}
<a^2>={0,2,4}
<a^3>={0,3}
and <a^6>={0}
<a^1> has order 6, <a^2> has order 3 ,<a^3> has order 2 and <a^6> has order 1. "
pretty much shows that, of those, only 1 is a generator!
For Z6, look at multiples:
1, 2, 3, 4, 5, 0: covers the whole group.
2, 4, 0: does not
3, 0: does not
4, 2*4= 8= 2 (mod 6), 3*4= 12= 0 (mod 6): does not
5, 2*5= 10= 4 (mod 6), 3*5= 15= 3 (mod 6), 4*5= 20= 2 (mod 6), 5*5= 25= 1 (mod 6), 6*6= 36= 0 (mod 6) covers the whole group.
1 and 5 are the generators.
 
  • #3
HallsofIvy said:
Do you understand what a "generator" is? Divisors of 6, except for 1 itself, can't be generators.
Your "(6), its generators are <a^1> , <a^2> , <a^3> and <a^6>
<a^1> ={0,1,2,3,4,5}
<a^2>={0,2,4}
<a^3>={0,3}
and <a^6>={0}
<a^1> has order 6, <a^2> has order 3 ,<a^3> has order 2 and <a^6> has order 1. "
pretty much shows that, of those, only 1 is a generator!
For Z6, look at multiples:
1, 2, 3, 4, 5, 0: covers the whole group.
2, 4, 0: does not
3, 0: does not
4, 2*4= 8= 2 (mod 6), 3*4= 12= 0 (mod 6): does not
5, 2*5= 10= 4 (mod 6), 3*5= 15= 3 (mod 6), 4*5= 20= 2 (mod 6), 5*5= 25= 1 (mod 6), 6*6= 36= 0 (mod 6) covers the whole group.
1 and 5 are the generators.

what do you mean something covers the whole group? I think I understand why <a^2> and <a^3> would cover Z(6 ) because all the elements that are in Z(6) are not in <a^2> or <a^3>.
4, 2*4= 8= 2 (mod 6), 3*4= 12= 0 (mod 6): does not
5, 2*5= 10= 4 (mod 6), 3*5= 15= 3 (mod 6), 4*5= 20= 2 (mod 6), 5*5= 25= 1 (mod 6), 6*6= 36= 0 (mod 6) covers the whole group.
1 and 5 are the generators.

The last part of your answer threw me completely off the wall. Where did you get 4,5, and 6 from?

I don't understand why you to
 
  • #4
Um
1+1 =2
2+1 =3
3+1 =4
4+1 =5
5+1 =6=0
0+1 =1
So 1 generates Z6

0+5=5
5+5=10=4
4+5=9=3
3+5=8=2
2+5=7=1
1+5=6=0

So does 5!

Wait... aren't 5 and 6 relatively prime? Hmmmm...what to do about those other groups...?
 
  • #5
Benzoate said:
what do you mean something covers the whole group?
By "cover the group" I mean that every member of the group is some multiple of the base number. That's what a generator does: multiples of that single element produce all elements of the group.
[/quote] I think I understand why <a^2> and <a^3> would cover Z(6 ) because all the elements that are in Z(6) are not in <a^2> or <a^3>.
No, that's why they DON'T "cover" the group!

The last part of your answer threw me completely off the wall. Where did you get 4,5, and 6 from?

I don't understand why you to
I was looking at multiples of the numbers. I'm not clear where your "a" came from- its not in your original problem. In "additive" notation (where we write the group operation as if it were addition so a+a= 2a) a member of the group, a, is a generator if a, 2a, 3a, 4a, ... eventually give every member of the group.
(In "multiplicative" notation (where we write the group operation as if it were multiplication so a*a= a2) a member of the group, a, is a generator if a, a2, a3, a4, ... eventually give every member of the group.

Since in Z(6), we are adding modulo 6, I looked at multiples of each member {0, 1, 2, 3, 4, 5}. I didn't bother to look at 0: obviously all multiples of 0 are 0. Multiples of 1 are, of course, 1, 2, 3, 4, 5, 6= 0 mod 6, 7= 1 mod 6 and we can stop: we have got all members of Z(6). 1 is a generator (the group identity always is). Multiples of 2 are, of course, 2, 4, 6= 0 mod 6, 8= 2 mod 6, 10= 4 mod 6 ... it's clear that we are just repeating 2, 4, 0: we do not get all members of Z(6) and so 2 is not a generator.
Multiples of 3 are 3, 6=0 mod 6, 9= 3 mod 6, 12= 0 mod 6, ... Do you see that we are repeating 3 and 0? We do not get all members of Z(6) and so 3 is not a generator.
Multiples of 4 are 4, 8= 2 mod 6, 12= 0 mod 6, 16= 4 mod 6, ... Again, we are getting 0, 2, 4 repeating. We do not get all members of Z(6) and so 4 is not a generator.
Multiples of 5 are 5, 10= 4 mod 6, 15= 3 mod 6, 20= 2 mod 6, 25= 1 mod 6, 30= 0 mod 6, 35= 5 mod 6 again, ... Now that same list repeats but we already have all the members of Z(6). 5 is a generator.
 
  • #6
HallsofIvy said:
1 is a generator (the group identity always is).


The identity is never a generator and 1 is not the identity in Z(6) (which is horrendously bad notation, by the way).
 
  • #7
Theorem: Given [tex]\mathbb{Z}_{n}[/tex] for [tex]n\geq 1[/tex] the generators of this group are [tex]\{k | \gcd(k,n) = 1 \mbox{ and }1\leq k \leq n \}[/tex].
 
  • #8
HallsofIvy said:
By "cover the group" I mean that every member of the group is some multiple of the base number. That's what a generator does: multiples of that single element produce all elements of the group.
I think I understand why <a^2> and <a^3> would cover Z(6 ) because all the elements that are in Z(6) are not in <a^2> or <a^3>.
No, that's why they DON'T "cover" the group!


I was looking at multiples of the numbers. I'm not clear where your "a" came from- its not in your original problem. In "additive" notation (where we write the group operation as if it were addition so a+a= 2a) a member of the group, a, is a generator if a, 2a, 3a, 4a, ... eventually give every member of the group.
(In "multiplicative" notation (where we write the group operation as if it were multiplication so a*a= a2) a member of the group, a, is a generator if a, a2, a3, a4, ... eventually give every member of the group.

Since in Z(6), we are adding modulo 6, I looked at multiples of each member {0, 1, 2, 3, 4, 5}. I didn't bother to look at 0: obviously all multiples of 0 are 0. Multiples of 1 are, of course, 1, 2, 3, 4, 5, 6= 0 mod 6, 7= 1 mod 6 and we can stop: we have got all members of Z(6). 1 is a generator (the group identity always is). Multiples of 2 are, of course, 2, 4, 6= 0 mod 6, 8= 2 mod 6, 10= 4 mod 6 ... it's clear that we are just repeating 2, 4, 0: we do not get all members of Z(6) and so 2 is not a generator.
Multiples of 3 are 3, 6=0 mod 6, 9= 3 mod 6, 12= 0 mod 6, ... Do you see that we are repeating 3 and 0? We do not get all members of Z(6) and so 3 is not a generator.
Multiples of 4 are 4, 8= 2 mod 6, 12= 0 mod 6, 16= 4 mod 6, ... Again, we are getting 0, 2, 4 repeating. We do not get all members of Z(6) and so 4 is not a generator.
Multiples of 5 are 5, 10= 4 mod 6, 15= 3 mod 6, 20= 2 mod 6, 25= 1 mod 6, 30= 0 mod 6, 35= 5 mod 6 again, ... Now that same list repeats but we already have all the members of Z(6). 5 is a generator.

I clearly understand now how the concept of generators. My only question is , isn't their an easier way to determine the generators of Z(20) without finding the remainders of 20
 
  • #9
What Kummer is saying is that a generator is relatively prime to 20. It has no common divisor (except 1) with 20. Do you see why x having a common divisor with 20 would really screw up it's chances of being a generator? To be concrete, suppose it is divisible by 5. Then it's equal to 5*k for some k. That means x*4=20*k. What's 20*k mod 20?
 
Last edited:
  • #10
Benzoate said:
I think I understand why <a^2> and <a^3> would cover Z(6 ) because all the elements that are in Z(6) are not in <a^2> or <a^3>.

I clearly understand now how the concept of generators. My only question is , isn't their an easier way to determine the generators of Z(20) without finding the remainders of 20

I don't think you do undestand what is going on. First, what the heck is a? You've never said what a is. Second, you should stick to additive notation for Z/6Z.
 

1. How do I find generators for cyclic group Z(6)?

To find generators for cyclic group Z(6), you need to first understand that Z(6) is the set of integers {0, 1, 2, 3, 4, 5} under addition modulo 6. To find generators, you need to find elements in this set that generate all other elements by repeated addition. In this case, the numbers 1 and 5 are generators for Z(6) because they can generate all other elements by repeated addition: 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, and 5 + 1 = 0 (mod 6). Therefore, the generators for Z(6) are 1 and 5.

2. Can there be more than one generator for cyclic group Z(8)?

Yes, there can be multiple generators for cyclic group Z(8). This is because Z(8) is the set of integers {0, 1, 2, 3, 4, 5, 6, 7} under addition modulo 8. The numbers 1, 3, 5, and 7 are all generators for Z(8) because they can generate all other elements by repeated addition: 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, 5 + 1 = 6, 6 + 1 = 7, 7 + 1 = 0 (mod 8). Therefore, there are four generators for Z(8).

3. How do I find generators for cyclic group Z(20)?

To find generators for cyclic group Z(20), you need to understand that Z(20) is the set of integers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} under addition modulo 20. The numbers 3, 7, 9, 11, and 17 are generators for Z(20) because they can generate all other elements by repeated addition: 3 + 3 = 6, 6 + 3 = 9, 9 + 3 = 12, 12 + 3 = 15, 15 + 3 = 18, 18 + 3 = 1, 1 + 3 = 4, 4 + 3 = 7, 7 + 3 = 10, 10 + 3 = 13, 13 + 3 = 16, 16 + 3 = 19, 19 + 3 = 2, 2 + 3 = 5, 5 + 3 = 8, 8 + 3 = 11, 11 + 3 = 14, 14 + 3 = 17, and 17 + 3 = 0 (mod 20). Therefore, the generators for Z(20) are 3, 7, 9, 11, and 17.

4. Is it possible for a cyclic group to have no generators?

No, it is not possible for a cyclic group to have no generators. This is because by definition, a cyclic group is a group where all elements can be generated by repeated application of a single element, which is called the generator. Therefore, every cyclic group must have at least one generator.

5. Can the generators for cyclic groups Z(6), Z(8), and Z(20) be the same?

Yes, it is possible for the generators for cyclic groups Z(6), Z(8), and Z(20) to be the same. In fact, the number 3 is a generator for all three groups. This is because 3 can generate all other elements in each group by repeated addition: 3 + 3 = 6 (mod 6), 6 + 3 = 9 (mod 8), and 9 + 3 = 12 (mod 20). However, it is important to note that not all generators for these groups will be the same, as shown in the previous answers.

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Linear and Abstract Algebra
Replies
7
Views
2K
  • Calculus and Beyond Homework Help
Replies
7
Views
1K
  • Calculus and Beyond Homework Help
Replies
9
Views
2K
  • Calculus and Beyond Homework Help
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
9
Views
2K
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
808
  • Calculus and Beyond Homework Help
Replies
15
Views
3K
Back
Top