Does a pressure regulator maintain constant pressure drop?

In summary, a pressure regulator is a device that can be connected across a valve to maintain a constant pressure drop across the valve. It is used to control the flow rate of a liquid by adjusting the area inside the valve. There are different types of pressure regulators, including traditional ones that maintain a constant outlet pressure and differential ones that maintain a constant differential pressure. The function of a pressure regulator is to open and close depending on pressure in order to maintain a desired pressure drop or pressure.
  • #1
sgvaibhav
68
0
I wanted to know the function of a pressure regulator..
Am using one to control liquid flow rate.

Here is my understanding-

A pressure regulator can be connected across a valve.

The pressure regulator maintains a constant "pressure drop" across the valve
so if i set it to give a drop of 10 kPa, whilst the pump provides 800 kPa, the pressure of liquid coming out from the valve will be 790 kpa ("Always maintain a drop of 10 kPa").

The valve is used to control the liquid flow rate - that is the valve is open or closed (by hand revolutions) which changes the area inside the valve changing the liquid mass flow rate.

How correct is this?
 
Engineering news on Phys.org
  • #2
Every pressure regulator I've ever dealt with maintains a constant outlet pressure.
 
  • #3
boneh3ad said:
Every pressure regulator I've ever dealt with maintains a constant outlet pressure.

not constant "pressure drop"?
 
  • #4
Most regulators act as boneh3d described.

A spring acts on one side of a diaphragm, fluid pressure on the other.
Usually the spring side of diaphragm is vented and fluid side of diaphragm is connected to outlet port, so diaphragm is balanced at a particular outlet pressure.
That's a traditional pressure regulator like he described.
The ones for home air compressors only cost about $5, disassemble one and figure it out its mechanism.

If instead the fluid side of diaphragm is connected to inlet port, you have a 'backpressure', or 'relief ' regulator.

There exist differential pressure regulators that operate as you want, but they are a bit less common. I've used a small one exactly as you describe.
For that application you connect one side of diaphragm to inlet, other side of diaphragm to outlet. Spring then balances the differential pressure.

Here's a manufacturer's site with technical literature:
http://www2.emersonprocess.com/en-U...alReference/Pages/TechnicalReference.aspx#itr

Look for their series 95LD and 95HD - it can be made to do what you want by pressurizing the spring case.
 
  • #5
jim hardy said:
Most regulators act as boneh3d described.

A spring acts on one side of a diaphragm, fluid pressure on the other.
Usually the spring side of diaphragm is vented and fluid side of diaphragm is connected to outlet port, so diaphragm is balanced at a particular outlet pressure.
That's a traditional pressure regulator like he described.
The ones for home air compressors only cost about $5, disassemble one and figure it out its mechanism.

If instead the fluid side of diaphragm is connected to inlet port, you have a 'backpressure', or 'relief ' regulator.

There exist differential pressure regulators that operate as you want, but they are a bit less common. I've used a small one exactly as you describe.
For that application you connect one side of diaphragm to inlet, other side of diaphragm to outlet. Spring then balances the differential pressure.

Here's a manufacturer's site with technical literature:
http://www2.emersonprocess.com/en-U...alReference/Pages/TechnicalReference.aspx#itr

Look for their series 95LD and 95HD - it can be made to do what you want by pressurizing the spring case.

Getting high pressure relief was a 2nd part of the problem.
So here's a schematic with names of components.

Explanation :

Liquid comes out from the pump.
The "differential pressure regulator" is connected across a metering to maintain constant pressure drop as desired.
The metering valve can be opened or closed to change the flow rates.
If something goes wrong, or if the shutoff valve (much ahead in the system) is closed, the high pressure relief valve opens after a specific amount of pressure, sending fuel back into the inlet.

Just verify me if i am going in the right path =)
 

Attachments

  • schematic.png
    schematic.png
    7.8 KB · Views: 907
  • #6
sgvaibhav said:
"differential pressure regulator"
That's not what you called it before. A "differential pressure regulator" would keep a constant differential pressure while a "pressure regulator" would keep a constant outlet pressure.

The difference is where the reference pressure is. If you reference to atmospheric pressure, you can maintain a constant outlet pressure whereas if you reference to the upstream pressure, you maintain a constant differential.
 
  • #7
Hi sgvaibhav,
sgvaibhav said:
I wanted to know the function of a pressure regulator..
Am using one to control liquid flow rate.
...
A pressure regulator can be connected across a valve.

The pressure regulator maintains a constant "pressure drop" across the valve
so if i set it to give a drop of 10 kPa, whilst the pump provides 800 kPa, the pressure of liquid coming out from the valve will be 790 kpa ("Always maintain a drop of 10 kPa").

The valve is used to control the liquid flow rate ...

sgvaibhav said:
Liquid comes out from the pump.
The "differential pressure regulator" is connected across a metering to maintain constant pressure drop as desired.
The metering valve can be opened or closed to change the flow rates.
If something goes wrong, or if the shutoff valve (much ahead in the system) is closed, the high pressure relief valve opens after a specific amount of pressure, sending fuel back into the inlet.

Just verify me if i am going in the right path =)
I'm not sure what you're doing with the differential pressure regulator but I think your idea is to have the regulator create a constant pressure drop so you also have a given dP across your metering valve. I think you're envisioning this constant dP across the metering valve will give you a constant flow rate. Is that right? Are you trying to get a constant flow rate? This might give you a constant flow rate across the metering valve (assuming you have a liquid) but the flow through the regulator will vary depending on flow in the system.

Regulators work by opening and closing depending on pressure. If you take a simple pressure reducing regulator with a given upstream pressure and a set downstream pressure, and then you try to increase flow rate downstream of the regulator, the regulator will open in order to provide more flow to keep the pressure downstream of the regulator constant. A differential pressure regulator is going to do the same thing. If you try to draw more fluid, the valve will see a drop in downstream pressure and open to try to maintain a given dP. If that's what you're trying to do, then you're obviously not going to get a constant flow rate.
 
  • #8
Russ and Q_goest are correct.

In the schematic given you'll need to control either position of metering valve or speed of pump .

I withdraw my earlier comment and apologize for mis-speaking.
 
  • #9
I need a fresh start, if only to clear my conscience..
Back to basics:

In that Emerson document i linked above,
http://www2.emersonprocess.com/en-U...alReference/Pages/TechnicalReference.aspx#itr

click the first link, "Regulator Control Theory"
and read it carefully.
Then take a look at Fig 1 which is a traditional pressure regulator.
Observe that its loading pressure is applied to BOTTOM of diaphragm,
which means it's an "Up to Close" valve. That keeps feedback negative.

Fig 1 can be modified slightly for your application.
If you have read the document (it's only two pages)
you see that to do what you want, you must make "loading pressure" be proportional to the differential pressure across your "load", which would be your metering valve.
To that end you'd add a connection from downstream side of "load" to top of diaphragm.
Select "up to close " as in fig 5 so that feedback is negative.

hope this helps you with the basics.
I have no idea what size stuff you're dealing with but rest assured there's an industrial gizmo made for it.

Note the 95*D valve i mentioned accommodates differential loading of its diaphragm.

Good luck,

old jim

here's the link to that '...theory' document, but it's so lengthy i was afraid it might not copy&paste. Easier to get at it through the first link, i think.

http://www.documentation.emersonprocess.com/groups/public/documents/reference/d351798x012_08.pdf#xml=http://www.documentation.emersonprocess.com/intradoc-cgi/idc_cgi_isapi.dll?IdcService=GET_XML_HIGHLIGHT_INFO&QueryText=xTrigger_Field+<substring>+`Marketing_Regs`++<AND>++dDocName+<substring>+`D351798X012`&SortField=dDocTitle&SortOrder=Asc&dDocName=D351798X012_08&HighlightType=PdfHighlight
 
Last edited:
  • #10
russ_watters said:
That's not what you called it before. A "differential pressure regulator" would keep a constant differential pressure while a "pressure regulator" would keep a constant outlet pressure.

The difference is where the reference pressure is. If you reference to atmospheric pressure, you can maintain a constant outlet pressure whereas if you reference to the upstream pressure, you maintain a constant differential.

Yes i wanted a "constant different pressure".
So the component that does that would be called "differential pressure regulator" i guess.
I do not require adjusting this differential pressure value, so i guess any differential pressure regulator would do the job.

Q_Goest said:
Hi sgvaibhav,



I'm not sure what you're doing with the differential pressure regulator but I think your idea is to have the regulator create a constant pressure drop so you also have a given dP across your metering valve. I think you're envisioning this constant dP across the metering valve will give you a constant flow rate. Is that right? Are you trying to get a constant flow rate? This might give you a constant flow rate across the metering valve (assuming you have a liquid) but the flow through the regulator will vary depending on flow in the system.

Regulators work by opening and closing depending on pressure. If you take a simple pressure reducing regulator with a given upstream pressure and a set downstream pressure, and then you try to increase flow rate downstream of the regulator, the regulator will open in order to provide more flow to keep the pressure downstream of the regulator constant. A differential pressure regulator is going to do the same thing. If you try to draw more fluid, the valve will see a drop in downstream pressure and open to try to maintain a given dP. If that's what you're trying to do, then you're obviously not going to get a constant flow rate.

yep.
one of my reference book states this.

"A flow of fluid may be metered by keeping the pressure drop or difference across the metering valve constant while varying the valve orifice. Most modern fuel controls meter fuel by this method, so an additional refinement would consist of a device to maintain a constant pressure drop across the metering valve, regardless of the pressure on either side of the valve or valve opening."

Are there any equations responsible for controlling flow rate containing dP or dA?

Thus I am trying to make a schematic as per the above mentioned description.
I will change the flow rate by opening closing the valve (http://img.directindustry.com/images_di/photo-g/metering-valve-62028-2476555.jpg).
So the schematic i attached is correct? {Do i need an external relief valve to bypass backflow of excessive liquid back to the pump, or a pressure regulator can do this?}


jim hardy said:
Russ and Q_goest are correct.

In the schematic given you'll need to control either position of metering valve or speed of pump .

I withdraw my earlier comment and apologize for mis-speaking.

Umm, i am little confused. Basically i won't change anything with the pump, leave it as it is so that it gives me a peak pressure output depending upon the flow rate and pump curves.
So i need to make changes to the shown schematic or add/remove any components?
 
  • #11
So i need to make changes to the shown schematic or add/remove any components?

Yes, see my post immediately prior to yours , where i tried to recover from yesterday's blunder.

it starts out: ""
I need a fresh start, if only to clear my conscience..
Back to basics: ""My face is a bit red...

Probably i posted while you were typing...old jim
 
  • #12
jim hardy said:
Yes, see my post immediately prior to yours , where i tried to recover from yesterday's blunder.

it starts out: ""
I need a fresh start, if only to clear my conscience..
Back to basics: ""


My face is a bit red...

Probably i posted while you were typing...


old jim

Hi sir,

Its ok. I had typed the post long ago, and not posted, thus our posts had overlapped.

Sorry for the delay from my side.
I read your prior post and the pdf file.

jim hardy said:
you see that to do what you want, you must make "loading pressure" be proportional to the differential pressure across your "load", which would be your metering valve.
To that end you'd add a connection from downstream side of "load" to top of diaphragm.
Select "up to close " as in fig 5 so that feedback is negative.

i think i understood what you meant, but i just prefer verifying my understanding to assure myself.
new schmatic attached.

i also checked out 95*D series and 95HD (pressure reducing, high pressure differential regulator) which looked very suitable for my purpose.
however i checked another category called 98HD (high pressure differential backpressure regulator)... i wonder if that is of any use for my purpose..
 

Attachments

  • schematicnew.png
    schematicnew.png
    6.8 KB · Views: 773
  • #13
Sorry for the delay from my side.

don't apologize - i figured you were working on it.
new schmatic attached.
well - to make it less ambiguous:

Look at your regulator:
The upper part of it,
the part that looks like two bowls clamped together with a column on top,
is actually two dished pieces of metal joined at that wide spot about its middle.
That wide spot is a flanged joint. Usually the flange has a circle of machine screws holding the two halves together, sometimes it's just a clamping ring on real small ones.
The diaphragm is in the plane of that flanged joint and is held between the two lips of the flange. It separates the upper dish from the lower dish.
That results in two chambers, one with a spring in it,
as shown in fig 3 of our "theory" link.
But the spring in ours is above the diaphragm, not below it as in fig3.
The spring in ours is physically inside that column atop the regulator.

It is necessary that the bottom of the diaphragm be connected to upstream side of load
and the top of diaphragm be connected to downstream side of load.
You've only shown one connection, downstream, and you've drawn it to bottom of diaphragm.

So fix that.

Then talk yourself through its action like this:
IF pressure on downstream side of your load drops,
diaphragm sees less pressure on top so it moves UP ,
which closes regulator, lowering pressure on upstream side of your load,
restoring desired dp across load.

Do same talk-through for an increase of downstream pressure, and for a change in load valve's area, and all permutations. Then you are working it in your head and understanding it.

Have you fallen asleep reading this yet?
Reason for my long, drawn out, simplistic explanation is I wanted to see you grasp the concept better and i think you're nearly there.
Please don't feel i am talking down to you - I'm just trying to be exact in my communication. So i keep it simple for my sake. I confuse easily. And i often criss-cross my words and say the wrong thing.
Feedback systems are NOT intuitive and your first few require this kind of study.

I'm not good with Paint and couldn't make it edit your drawing - that's my weakness not yours. Otherwise i'd have drawn it , but you are perfectly able.

Be aware that some valves are UP to CLOSE and others are UP to OPEN.
You'll have to be aware which you have when figuring how to connect the sensing lines.

i wonder if that(98HD) is of any use for my purpose..
You'll have to decide that from the characteristics of your process fluid and the flows and pressures of your process.
As i said i only did this once, that was on an air system using very small regulator and valve that came as a unit.

old jim
 
  • #14
Read that a few times and tried to grasp it all...
getting excited as i feel I am reaching the eureka stage...

To verify this time - i drew a regulator this time on paper (please bear my drawing :P)

Im trying to simulate the situation of what happens as load is increased (just the vice-versa of what you described - for load being decreased).

So did I finally get it? Is the attached pdf file correct? (The diagram and simulation of situation 1)

Also another tiny question - the high pressure relief valve would have to be placed just after the pump? It would be required as a safety element when the shut-off valve is closed muuuch ahead in the downstream section.

I need this regulator and this metering control system to control the fuel flow rate as a part of my project.
The flow rate values are relatively small - ranging from 0.3l/min to 0.95l/min.
However fuel pressures are expected to go about 100 to 150 psi after the fuel pump.
Need to calculate the required dP now...
 

Attachments

  • IMG_0001.pdf
    388.9 KB · Views: 307
  • #15
So did I finally get it? Is the attached pdf file correct? (The diagram and simulation of situation 1)

Well now--- I see real progress !

Congratulations !

Your sketch might accept these two refinements -

1. Complete the connection of upstream pressure to bottom chanber, perhaps just below diaphragm, and downstream to top chamber perhaps just above the diaphragm..

2. Move the regulator body left over to where your question mark is, and draw the regulating valve in the line immediately below. Add a rod to connect regulating valve to diaphragm..

In your real regulator there's a seal around that rod so regulator body is airtight.
In your regulator there's also a rod protruding out the top which allows adjustment of spring force.

As i suggested - get a cheap regulator and take it apart. They're ingenious, and doing that will make your thought process even clearer.

Usually in el-cheapo regulators the valve is simply a hole covered with a plastic disc, moved directly by the diaphragm. The spring pushes directly on the other side of diaphragm.

i feel I am reaching the eureka stage...
That's what we strive for - "eureka's are a joy forever".
old jim
 
  • #16
I was looking out for ready-made regulators to use them.
But whilst looking out for regulators, I got confused since different configurations are used.
I found three configurations being commonly used, which I attached in this post.

-I cannot understand the difference in these configurations, since all these configurations are using differential pressure regulators.
-Which one would be a good suggested configuration for my purpose.

Something perfect would be a pressure regulator with a inbuilt valve to control the fuel flow, so a single component does it all.In the attached picture, the black box is the pressure regulator, and the trapezoidal body is the metering valve.I understand how the regulator works [thanks to your efforts and explanation sir], but i want to know which one suits best for my application.
I'll briefly mention my system, which will give an idea what kind control system is required for my application.
Fuel system - Fuel comes from the tank, gets pressurized at 100 psi (max) using the fuel pump. The range of flow rates is from 0.3l/min to 1l/min. Then it flows to the control system (in which I am having confusion). After passing these components, it will finally move to the atomizing nozzles, where the fuel (Kerosene) will get atomized into tiny droplets to be burnt in the combustion chamber.

I hope my question is little more clear.
Sorry for so much text :P
 

Attachments

  • configuration.png
    configuration.png
    5.9 KB · Views: 772
Last edited:

1. What is the purpose of a pressure regulator?

A pressure regulator is a device used to maintain a constant pressure drop across a system, ensuring that the pressure on the output side remains stable despite changes in the input pressure. It is commonly used in various industries, including gas and water supply, to control and regulate pressure levels.

2. How does a pressure regulator maintain constant pressure drop?

A pressure regulator works by detecting changes in the input pressure and adjusting the output pressure accordingly. It uses a diaphragm or spring-loaded mechanism to open or close a valve, limiting the flow of fluid or gas and maintaining a consistent pressure drop across the system.

3. Can a pressure regulator maintain constant pressure drop in all situations?

No, a pressure regulator may not be able to maintain constant pressure drop in all situations. External factors such as changes in temperature, flow rate, and backpressure can affect its performance. It is important to choose the appropriate type and size of pressure regulator for the specific application to ensure its effectiveness.

4. What are the consequences of not using a pressure regulator?

Without a pressure regulator, the pressure inside a system may fluctuate and become unstable. This can lead to several problems such as damage to equipment, leaks, and inefficient operation. In extreme cases, it can even cause accidents or system failures.

5. How do I choose the right pressure regulator for my application?

Choosing the right pressure regulator depends on various factors, including the type of fluid or gas, the required pressure range, and the flow rate. It is best to consult with a professional or refer to manufacturer specifications to determine the most suitable pressure regulator for your specific application.

Similar threads

Replies
2
Views
192
  • Mechanical Engineering
Replies
5
Views
1K
  • Mechanical Engineering
Replies
3
Views
896
  • Mechanical Engineering
Replies
6
Views
2K
Replies
7
Views
1K
  • Mechanical Engineering
Replies
3
Views
3K
  • Mechanical Engineering
Replies
1
Views
1K
  • Mechanical Engineering
Replies
10
Views
4K
  • Mechanical Engineering
Replies
28
Views
2K
  • Mechanical Engineering
Replies
2
Views
3K
Back
Top