Why do non-integer powers fail in graphing x^x?

  • Thread starter tony873004
  • Start date
  • Tags
    Weird
In summary, the conversation discusses various mathematical concepts such as graphing functions with negative numbers, the validity of non-integer solutions, and the value of 0^0. The speakers debate on why calculators may give certain answers and the potential use of L'Hopital's rule to solve for 0^0.
  • #1
tony873004
Science Advisor
Gold Member
1,752
143
I wrote my own graphing software, and I thought it had a bug in it, because when I graphed x^x, the curve starts out at (1,1), dips down a little, then rises again to pass through (1,1) as expected, before traveling to the wild blue yonder.

It seemed like this function has no range in the negative numbers. But then I was thinking (-1)^(-1) is just 1/-1=-1. Lo and behold, if I stare real close, it did plot a pixel there. And another one at (-2, 0.25). And others that seemed to asymptotically approach 0. I guess a graphing calculator would have been more obvious since the pixels are much bigger. But why no pixels inbetween?

Playing with the calculator, I realized that only (-integer)^(-integer) has a valid solution. Is there a plain English explanation as to why non-integers fail?

It also got me to thinking... 0^0. Why is this 1? It seems like it should be indeterminate, like 0/0. Zero divided by anything is 0, and anything divided by 0 is infinity, setting up a paradox for 0/0, which is what I thought defined an indeterminate. 0^anything = 0. anything^0=1, so 0^0 should be another paradox, hence indeterminate. But the calculator sees things differently.
 
Mathematics news on Phys.org
  • #2
Did you try plugging in, say, x = -1/2, and computing by hand?

Also, your calculator probably hasn't plotted a pixel at (0, 1). What you are seeing is that the limit of your function as x goes to zero (from the positive side) is positive 1, but no point actually at (0, 1).
 
  • #3
That's a good way to put it. (-1/2)^(-1/2) = 1/(-1/2)^(1/2)=1/sqrt(-1/2), and I can't take the square root of a negative number because nothing times itself will equal a negative number since (-)*(-)=+. Thanks for the plain English explanation.

But you can take the cube root of a negative number. (-1/3)^(-1/3) = 1/(-1/3)^(1/3)^(1/3) = 1/crt(-1/3). What times itself, times itself again = -1/3? Well, the cube root of (+1/3) = 0.693361274350635. If I make this negative and cube it, I get (-0.693361274350635)^3 = -0.333333333333334, which is -1/3, except for that 4 at the end, which should have rounded to a 3, I'm guessing. So it seems there is a number that when cubed can equal -1/3. So why does the calculator consider 1/crt(-1/3) invalid?

re: 0^0, my software, which I wrote myself, is at the mercy of how the programming language does the math. When it arrives at x=0, it performs the operation 0^0, which it considers to be 1 (same result as Google Calculator). So, arriving at an answer it considers to be vaild, its next instruction is to plot (0,1), so that pixel does exist. I would have just expected some sort of overflow error, not a nice clean answer, because it makes more sense the way you phrased it, that it's limit from the positive side is 1, but the actual point does not exist.
 
  • #4
tony873004 said:
It also got me to thinking... 0^0. Why is this 1? It seems like it should be indeterminate, like 0/0. Zero divided by anything is 0, and anything divided by 0 is infinity, setting up a paradox for 0/0, which is what I thought defined an indeterminate. 0^anything = 0. anything^0=1, so 0^0 should be another paradox, hence indeterminate. But the calculator sees things differently.

You know, sometimes you have to take more confidence in yourself :P Don't ask "why is this 1?", ask "why does that calculator think its 1". Calculators are prone to mistakes. After all, Calculators are humans too :P
 
  • #5
tony873004 said:
It also got me to thinking... 0^0. Why is this 1? It seems like it should be indeterminate, like 0/0. Zero divided by anything is 0, and anything divided by 0 is infinity, setting up a paradox for 0/0, which is what I thought defined an indeterminate. 0^anything = 0. anything^0=1, so 0^0 should be another paradox, hence indeterminate. But the calculator sees things differently.
One good reason is because 0 = -0, and we want x^-a = 1/x^a
 
  • #6
tony873004 said:
But you can take the cube root of a negative number. (-1/3)^(-1/3) = 1/(-1/3)^(1/3)^(1/3) = 1/crt(-1/3). What times itself, times itself again = -1/3? Well, the cube root of (+1/3) = 0.693361274350635. If I make this negative and cube it, I get (-0.693361274350635)^3 = -0.333333333333334, which is -1/3, except for that 4 at the end, which should have rounded to a 3, I'm guessing. So it seems there is a number that when cubed can equal -1/3. So why does the calculator consider 1/crt(-1/3) invalid?
So now, you should be able to guess what's going on: you know that if you have a number that is exactly a rational number with an odd denominator, you can compute x^x... how often do you think your calculator tried such a value of x?

There's another issue, by the way... if your calculator decides that it should use the principal value of exponentation, then numbers like (-1/3)^(-1/3) are actually complex. This expression is trivalued: any of the following three numbers work:
[tex]-\sqrt[3]{3},[/tex]
[tex]\sqrt[3]{3} \left( \frac{1 + i \sqrt{3}}{2} \right),[/tex]
[tex]\sqrt[3]{3} \left( \frac{1 - i \sqrt{3}}{2} \right).[/tex]

I believe the usual standard for picking which value to return says to use
[tex]\sqrt[3]{3} \left( \frac{1 - i \sqrt{3}}{2} \right).[/tex]
 
  • #7
tony873004 said:
It also got me to thinking... 0^0. Why is this 1? It seems like it should be indeterminate, like 0/0. Zero divided by anything is 0, and anything divided by 0 is infinity, setting up a paradox for 0/0, which is what I thought defined an indeterminate. 0^anything = 0. anything^0=1, so 0^0 should be another paradox, hence indeterminate. But the calculator sees things differently.

My favorite equation! I think 0^0 is a candidate for L'Hopital's rule. I seem to recall working this out a while back and convincing myself of the result.

Here's another challenge. If y = xx, what is y'?
 
  • #8
  • #9
I agree. Like I said in my previous post, I think it can be shown using L'Hopital's rule (unless I applied it incorrectly, which is entirely possible!)

Here goes:

y = xx

ln(y) = x*ln(x) = ln(x) / x-1 = f(x)/g(x)

Limit of both f(x) and g(x) is infinity as x -> 0. Therefore, candidate for L'Hopital's rule.

f'(x) = x-1
g'(x) = x-2

f'(x)/g'(x) = x

lim f'(x)/g'(x) = 0 as x->0

Therefore the lim as x->0: ln(y) = 0 = ln(00)

e0 = 1 = eln(00) = 00
 
  • #10
murshid_islam said:
matt grime said in this thread that 0^0 = 1. :confused:
And he was right, it’s a matter of definition, there isn’t really anything to argue about.
 
  • #11
matt grime did NOT say that 0^0 = 1. He said that that definition is convenient for many definitions, although he knows perfectly well that the proper limit does not exist.

hotvette, when you are using your limit, you use x^x, you assume the exponent approaches zero at the same rate as the base. The more general limit is [tex]\lim_{x\to 0, y \to 0} x^y[/tex]. This way, when zero is approaches from different directions, no limit exists.

The reason 0^0 = 1 works nicely for the reasons matt grime stated, such as power series, is because they are only in the 1 variable, x, so approaching 0 from only 1 direction.

Btw, nice to have you back murshid, where have you been?
 
  • #12
Huh? I didn't know there was any stipulation about the rate at which the variable in various pieces tend to zero. Let me ask this. Following is from my old college calculus textbook:

[tex]\lim_{x\to 0} \frac{ln(1 + x)}{x} = \lim_{x\to 0} \frac{1}{(1+x)} = 1[/tex]

Therefore:

[tex]\lim_{x\to 0} e^\frac{ln(1 + x)}{x} = e^1 = e = \lim_{x\to 0}(1 + x)^{1/x}[/tex]

How is this any different than the following?

[tex]\lim_{x\to 0} \frac{ln(x)}{x^{-1}} = \lim_{x\to 0} \frac{x^2}{x} = x = 0[/tex]

Therefore:

[tex]\lim_{x\to 0} e^\frac{ln(x)}{x^{-1}} = e^0 = 1 = \lim_{x\to 0}x^x[/tex]
 
  • #13
I never disputed your computation of the limit [tex]\lim_{x\to 0} x^x [/tex]. What you did IS correct, except the reason you define your limit in terms of only 1 variable, x, is because you assume the exponent and base are approaching zero, and are always equal. The actual limit that must be solved to rigorously define 0^0 for everything is the limit i gave above, where x and y are both approaching zero, but not necessarily equal.
 
  • #14
hotvette said:
My favorite equation! I think 0^0 is a candidate for L'Hopital's rule. I seem to recall working this out a while back and convincing myself of the result.
Do you mean a limit that evaluates as 00? There a many different limits that evaluate like that and the result, using L'Hopital's rule, depends upon the precise function used. That's one reason why 00 is undefined.

Here's another challenge. If y = xx, what is y'?
Pretty standard Calculus I problem.
 
  • #15
Gib Z said:
Btw, nice to have you back murshid, where have you been?
:smile: i am a business student now. i am doing my MBA right now. so i guess i don't get much time for maths. but i will try to be regular from now on. :smile:
 
  • #16
Here's another challenge. If y = xx, what is y'?
is it [tex]x^x(1 + \ln x)[/tex]
 
  • #17
murshid_islam said:
is it [tex]x^x(1 + \ln x)[/tex]

Indeed it is.
 
  • #18
Here's a cute point: In differentiating [tex]f(x)^{g(x)}[/tex] there are two kinds of mistakes we could make.

We could ignore the fact that g(x) is variable and use the power rule: take the derivative to be [tex]g(x)f(x)^{g(x)- 1}[/tex].

We could ignore the fact that f(x) is variable and use the exponential rule: take the derivative to be [tex]ln(f(x))f(x)^{g(x)}[/tex]

Of course, neither of those is correct. The correct derivative is their sum!
 

1. What is the meaning of "X^x"?

"X^x" is an expression used in mathematics to represent the variable X raised to the power of itself (X multiplied by itself). It is also known as the exponential form of X or X to the power of X.

2. How do you solve for "X^x"?

To solve for "X^x", you can use the basic rules of exponents. For example, if the value of X is known, you can simply multiply X by itself the number of times indicated by the exponent. If the value of X is unknown, you can use logarithms to solve for X.

3. What are the properties of "X^x"?

"X^x" has several properties, including the power of a power rule (X^(x^y) = (X^x)^y), the power of a product rule ((X*Y)^x = X^x * Y^x), and the power of a quotient rule ((X/Y)^x = X^x / Y^x). It is also important to note that "X^x" is only defined for positive values of X; for negative values, the result can be complex.

4. Can "X^x" be graphed?

Yes, "X^x" can be graphed using a graphing calculator or software. The graph will appear as a curve that starts at the point (0,1) and increases exponentially as X increases. The curve will approach the X-axis as X approaches negative infinity and will approach positive infinity as X approaches positive infinity.

5. How is "X^x" used in real life?

The exponential form "X^x" has many applications in real life, including calculating compound interest, modeling population growth, and describing the decay of radioactive elements. It is also used in fields such as physics, chemistry, and engineering to represent quantities that change exponentially over time or space.

Similar threads

Replies
8
Views
850
Replies
4
Views
285
  • General Math
2
Replies
45
Views
3K
  • Introductory Physics Homework Help
Replies
8
Views
499
Replies
9
Views
942
  • General Math
2
Replies
44
Views
3K
Replies
3
Views
1K
  • General Math
Replies
11
Views
1K
  • Special and General Relativity
4
Replies
115
Views
5K
Back
Top