Fission to make gold or silver

In summary: Third, even if you could get a high enough yield from a suitable reaction, it still wouldn't be worth it - the value of the gold you would get would be much less than the cost of the necessary energy.
  • #1
afr123
4
0
What's stopping entrepreneurs from using fission - taking mercury, for example, or any heavier element for gold/silver - and creating gold and silver from it? Do you think there will come a day when this is commercially viable? Any guesses when?
 
Physics news on Phys.org
  • #2
There are no decay chains which end with stable gold or silver. The only way to produce them is by bombarding other isotopes with protons or neutrons. This is very expensive - many orders of magnitude more expensive than the resulting material is worth.

You could bombard Hg-196 with neutrons to make Hg-197, which then decays to Au-197. However Hg-196 is only 0.15% of all mercury and neutrons aren't free either. Even in a high flux nuclear reactor the production rate of Hg-197 would be miniscule compared to the value of gold you could retrieve.
 
  • #3
Fission induced by high-energetic particles? You cannot control the fission reaction - you would get a mixture of a lot of different isotopes from different elements, many of them would be radioactive. In addition, the acceleration of the particles would be too expensive for the tiny amount of gold/silver you can get. Even with 100% efficiency everywhere, the electric power required for the acceleration is more expensive than the material you can produce with it.
 
  • #4
QuantumPion said:
There are no decay chains which end with stable gold or silver. .

Hg 201 alfa to Pt 197 beta to Au 197 seems a decay chain to me.
 
  • #5
arivero said:
Hg 201 alfa to Pt 197 beta to Au 197 seems a decay chain to me.

Hg-201 does not undergo alpha decay, is stable.
 
  • #6
I ran a quick sample case in ORIGEN-ARP with regular PWR fuel mixed with natural Hg. After approximately 1.5 years of full power operation Au-197 reaches its maximum concentration after which it begins to absorb more neutrons than are produced and its concentration decreases. The amount of gold created is approximately 10 grams per MTU per 1 w/o initial Hg. There is no way that is worth the loss of fuel economy, especially considering the cost of reprocessing. The U-235 you have to waste to generate the extra neutrons is far more valuable than the gold you end up with.
 
  • #7
Hg 201 is metastable, not stable. The sum of masses of Pt 197 and alpha is lower than the mass of Hg 201, if I have checked correctly the tables -but please doublecheck yourself-. That should mean that you do not need to waste neutrons and the gamma energy comes back to you as heat.

I have never used ORIGEN ARP. Can it emulate these conditions, pure 201 Hg with no neutron absortion?
 
Last edited:
  • #8
arivero said:
Hg 201 is metastable, not stable. The sum of masses of Pt 197 and alpha is lower than the mass of Hg 201, if I have checked correctly the tables -but please doublecheck yourself-. That should mean that you do not need to waste neutrons and the gamma energy comes back to you as heat.

I have never used ORIGEN ARP. Can it emulate these conditions, pure 201 Hg with no neutron absortion?

ENDF does not have any photonuclear or decay data for Hg-201. Just because a reaction has a positive Q-value does not necessarily mean it is physically possible. I'm not familiar with (λ,α) reactions.
 
  • #9
arivero said:
and the gamma energy comes back to you as heat.
In other words, you lose a significant fraction of the energy, even if it is possible.

200.970302 u - 196.967340 u - 4.0026032542 u = 334keV (numbers from Wikipedia)
This is equivalent to 45kWh/g gold. Any significant gold production would handle power comparable to power plants, regardless of the efficiency of the production.
 
  • #10
QuantumPion said:
I'm not familiar with (λ,α) reactions.

Yep I guess that this is the general problem when answering to this question :-( It is not easy to find empirical data, and it is not easy to be sure about how some gamma pressure should enhance, if it does, the tunneling rate. But it is important,imo, to stress that the usual answer "It needs to much energy" is wrong; with a positive Q-Value, one can not tell that it is about energy.

Of course, for the particular formulation of the question here, there is a trivial answer, as the OP asks about "fission" and not "nuclear reactions". In this case, it is OK to tell that the fission products are very scattered in the periodic table and unmanageable.

For nuclear reaction, I think the answer is more subtle.

- First, there is only a few suitable reactions (plus few data on them, plus few researchers who could be interested... but in any case, only a few suitable)
- Second, suitable reactions are going to be across elements with nearby masses, this is different from fission. And elements with similar mass have, in first order of approximation, similar production rates in stellar process and then, barring chemical opportunities, similar abundance. Most Hg, for instance, comes from two or three extraction sites.
- Third, the ambiental risk of some of the suitable reactions goes even worse. Take Hg; its extraction and chemical separation is even forbidden in some parts of the world. Put some excess in water and kill yourself in the long run. Add the costs and risk of preparation, with isotope separation and all that, and the cost of late purification. Join all of it to the second point, and break-even becomes unfeasible
 
  • #11
mfb said:
In other words, you lose a significant fraction of the energy, even if it is possible.

200.970302 u - 196.967340 u - 4.0026032542 u = 334keV (numbers from Wikipedia)
This is equivalent to 45kWh/g gold. Any significant gold production would handle power comparable to power plants, regardless of the efficiency of the production.

Yeah, but the first scenario calculated by quantumpion was to use radiation inside a power plant already. So now you have a Hg powered power plant :biggrin:. Really I speculate that most of the energy is going to be heat because most of the energy is going to be in the alpha, which will surely dissipate in collisions. There is also the beta, from the intermediate Pt, and then there are surely some secondary gammas around. Not sure if some of this can be used to keep the reaction running... is (α, 2 α) with enough cross-section? Surely not.

In any case let me note that it is funny to notice that the problem is not how to put energy in (as usually it is told in popsci articles) but how to get rid of the energy if you are able to make it to work :cool:
 
Last edited:
  • #12
Thanks. I don't know much about chemistry/physics - only at the high school level. I'm just trying to understand, as an investor, whether or not it is 1) feasible to create gold and silver at economical levels and 2) if it is not, do you think it will be possible in the near future. When would you guess, that nuclear reactors could replace mines, if possible at all.
 
  • #13
afr123 said:
Thanks. I don't know much about chemistry/physics - only at the high school level. I'm just trying to understand, as an investor, whether or not it is 1) feasible to create gold and silver at economical levels and 2) if it is not, do you think it will be possible in the near future. When would you guess, that nuclear reactors could replace mines, if possible at all.

1) no
2) never.
 
  • #14
I agree with QP. Let me add, if you have been told otherwise, you are been driven towards a scam.
 

1. What is fission?

Fission is a nuclear reaction in which the nucleus of an atom splits into smaller parts, releasing a large amount of energy.

2. Can fission be used to make gold or silver?

No, fission cannot be used to make gold or silver. Fission reactions can only occur in elements with large atomic numbers, like uranium. Gold and silver have relatively small atomic numbers and cannot undergo fission reactions.

3. Is there a way to turn other elements into gold or silver through fission?

No, there is no known way to turn other elements into gold or silver through fission. The process of transmutation, or changing one element into another, is possible through nuclear reactions, but it is highly complex and expensive.

4. Why do people think fission can be used to make gold or silver?

There is a misconception that fission can be used to create any element, including gold or silver. This idea likely comes from the fact that nuclear reactors can produce a wide range of elements through the process of transmutation.

5. Are there any other ways to make gold or silver?

Yes, there are other ways to make gold or silver, but they are also highly complex and expensive. These methods include nuclear fusion, particle accelerators, and nuclear bombardment.

Similar threads

  • High Energy, Nuclear, Particle Physics
Replies
18
Views
1K
  • Atomic and Condensed Matter
Replies
1
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
2
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
3
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
4
Views
1K
Replies
3
Views
4K
  • Science Fiction and Fantasy Media
Replies
2
Views
1K
Replies
11
Views
1K
  • High Energy, Nuclear, Particle Physics
Replies
2
Views
903
  • Other Physics Topics
Replies
7
Views
3K
Back
Top