Ultra-Dense Deuterium: Is it Useful for Spacecraft?

  • Thread starter sanman
  • Start date
  • Tags
    Deuterium
In summary: I don't know, it doesn't seem like a very sensible explanation.In summary, the article discusses a new material that has been produced in very small amounts and is apparently unstable. It could be useful for powering spacecraft one day, but there is still some unknown about it. There is also some concern that the material could explode spontaneously.
  • #36
What factors and processes govern the formation of these nano-clusters? Do the location and occurrence of these nano-clusters correlate with anything? I'm just wondering how to encourage and maximize their formation. If they could be created more prolifically, then this could be revolutionary.
 
Physics news on Phys.org
  • #37
George H. Miley is working on this area along with Holmid...

Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=6056192

Clusters of condensed deuterium of densities up to 10^29 cm−3 in pores in solid oxide crystals were confirmed from time-of-flight mass spectrometry measurements. Based on these facts, a schematic outline and possible conclusions of expectable generalizations are presented, which may lead to a simplification of laser driven fusion energy including new techniques for preparation of targets for application in experiments of the NIF type, but also for modified fast igniter experiments using proton or electron beams or side-on ignition of low compressed solid fusion fuel.

"Ultra high density deuterium clusters for low energy nuclear reactions"
http://abstracts.acs.org/chem/239nm/program/view.php?obj_id=10048&terms=

"Our low energy nuclear reaction research (LENR) has embedded ultra high density deuterium “clusters” (D cluster) in Palladium (Pd) thin films. These clusters approach metallic conditions, exhibiting super conducting properties. [1] They represent “nuclear reactive sites” needed for LENR. The resulting reactions are vigorous, giving the potential for a high power density cell. Clusters are achieved through electrochemically loading-unloading deuterium into a thin metal palladium film creating local defects which form a strong potential trap where deuterium condenses into “clusters” of ~100 atoms. Research now focuses on nano-manufactured structures to achieve a high volumetric density of these trap sites. Alternately condensed deuterium inverted Rydberg 2.3-pm deuteron spacing is being studied. [2]

---

This parallels Arata's work, in which he speaks of "pynco-deuterium lumps" and "solid deuterium" at room temperature in lattices
http://scholar.google.com/scholar?hl=en&q=arata+deuterium

http://www.journalarchive.jst.go.jp/english/jnlabstract_en.php?cdjournal=pjab1977&cdvol=78&noissue=3&startpage=57 [Broken]
"It seems that nuclear fusion in solid (“solid fusion”) takes place in the highly condensed “deuterium-lump”inside each unit cell of the“metallic deuterium lattice” (or mixed hydrogen one) which is formed inside each cell of the host metal lattice. It is considered, therefore, that each unit cell of the host lattice corresponds to minimum units of “solid fusion reactor”. In order to achieve “solid fusion”, just the generation of the ultrahigh density “deuterium-lump” (simply “pycnodeuterium-lump”) coagulated locally inside unit cell of the host lattice and/or the highly condensed metallic deuterium lattice should be an indispensable condition.

---

And Dufour's work, in which he speaks of "hydrex" and "deutex", "shrunken hydrogen atoms" like hydrinos, and clusters of the "hydrex" and "deutex", which sounds very much like Rydberg matter
http://scholar.google.com/scholar?hl=en&q=dufour+hydrex

"The Hydrex Hypothesis - It has been shown by a quantum electrodynamics calculation 21 that resonances of longlifetime (seconds), nuclear dimensions (femtometres), and low energy of formation(electron volts) could exist. This concept seems to look like the “shrunken hydrogen atoms” proposed by various authors. 22,23 It is indeed very different in two ways: Being a metastable state, it needs energy to be formed (a few electron volts) and reverts to normal hydrogen after a few seconds, liberating back its energy of formation (it is thus not thesource of the energy observed). Its formation can be described as the electron spin-proton nuclear spin interaction becoming first order in the lattice environment (whereas, it is third order in a normal hydrogen atom). A concept similar to Ref. 21, but yielding a stable state has been developed. 24 The corresponding copious emission of X rays thatshould have been observed to explain the measured energies of reaction were notdetected. Note that in Ref. 19 a concept is given of a shrunken atom, solidly based on a plasma dielectric explanation. The high electron concentration, in the swimming electronlayer at metal interfaces, 19 invoked to increase the screening factor, could also favor the synthesis of hydrex. Moreover, we consider that the hydrex cannot yield a neutron because this reaction is strongly endothermic. To explain our results we put forward thefollowing working hypothesis: in a metal lattice and under proper conditions, the formation of such resonances (metastable state) could be favored. We propose to call them hydrex, and we assume that they are actually formed in CF and LENR experiments.

The Action of Hydrex on a Nucleus of the Lattice - Once formed, a number of hydrex could gather round a nucleus of the lattice to form a cluster of nuclear size and of very long lifetime compared to nuclear time (10 -22 s). They are likely be polarized by the electrostatic potential of the nucleus. The cluster can thus be described as a nucleus, surrounded at nuclear distance, first by a negative layer (the electrons of all the hydrex of the cluster) and then by a positive layer (the protons of these hydrex). The formation of the cluster would result in all hydrex involved transferring their kinetic energy to the nucleus, which would thus be in an excited state. In this excited cluster, nuclear rearrangements could take place, yielding mainly 4 He, nuclei of atomic masses smaller than that of the host metal, and small amounts of 3 He and tritium. Because this nuclear rearrangement is a many body reaction, the products formed should be stable products in their ground states, with most of the reaction energy being carried away as kinetic energy by the alpha particles formed. The inevitable excess of neutrons would react with the surrounding hydrex protons to yield mainly 4 He and small amounts of 3 He and 3 H. This last point is a general feature of hydrex catalyzed reactions. It explains why their energies of reaction are always higher than those of the corresponding fission reaction: The energy generated by the combination of the protons of the hydrex with the excess neutrons (resulting from the fission of the nucleus) to yield 4 He adds to the energy of fission. Figure 9 (Ref. 27) is a “common sense” illustration of this bound state, which looks very much like a nuclear-molecular state, 28 with the neutrons acting like the covalent bounding of electrons observed in chemical molecules."

---

Theoretical explanations for the new, dense state of deuterium Rydberg matter are already being put forward:

"Ultradense Deuterium"
http://arxiv.org/ftp/arxiv/papers/0912/0912.5414.pdf

"An attempt is made to explain the recently reported occurrence of ultradense deuterium as an isothermal transition of Rydberg matter into a high density phase by quantum mechanical exchange forces. It is conjectured that the transition is made possible by the formation of vortices in a Cooper pair electron fluid, separating the electrons from the deuterons, with the deuterons undergoing Bose-Einstein condensation in the core of the vortices. If such a state of deuterium should exist at the reported density of about 130,000 g/cm3, it would greatly facility the ignition of a thermonuclear detonation wave in pure deuterium, by placing the deuterium in a thin disc, to be ignited by a pulsed ultrafast laser or particle beam of modest energy... The existence of Rydberg matter was in 1980 first predicted by E.A. Manykin, Ozhovan and Puluektov [1]. But it was a research group in Sweden at University of Gothenburg, under the leadership of Leif Holmlid, which has recently announced it had discovered an ultradense form of deuterium by a phase transition from a Rydberg matter state of deuterium, a million times more dense than liquid deuterium [2]. Because this claim is so extraordinary, it must be taken with a great deal of skepticism. But since Leif Holmlid has an established record of publications about Rydberg matter in the refereed scientific literature the claim cannot be easily dismissed. It is the purpose of this communication to explore the question if such an unusual state of matter might exist."

---

The above paper also says "this points into the direction of a large effective mass for the electrons, possible if the electron fluid forms vortices, because vortices have a large effective mass." The concept of a large effective electron mass for dense deuterium has been a recurring theme...

http://www.springerlink.com/content/53q473g61w333164/
A possible mechanism for the occurrence of nuclear fusion at room temperature is presented. Neutralization of the positive charge of the deuteron nucleus by its orbiting electron due to large enhancement of effective mass results in the vanishing of the Coulomb barrier which facilitates fusion at room temperature.

http://www.askmar.com/Robert%20Bussard/Metal%20Lattice%20Fusion.pdf
A model of deuterium-deuterium fusion in metal lattices presented based on two phenomena:
a) reactions between virtual-state pairs of deuterons “bound” by electrons of high effective mass m* and
b) deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual state nuclear structure groups in palladium nuclei.

---

The "Cold Fusion Battery" bears a lot of resemblance to metal hydride energy generation systems Randell Mills is working on at Blacklight Power (http://www.blacklightpower.com/new.shtml [Broken])...

Researcher Describes Conceptual Cold Fusion “Battery”, or Small Power Unit
http://www.greencarcongress.com/2010/03/miley-20100322.html#more

Some more on Miley's metal hydride based "Proton Reaction Cell" concept, sounds a lot like Mills' prototypes in a number of respects...
http://books.google.com/books?id=0-_QTYWBFvYC&pg=PA474&dq=proton+reaction+cell&cd=1

May explain anomalous spectral lines in interstellar gas, as claimed by hydrinos:
L. Holmlid, "Amplification by stimulated emission in Rydberg Matter clusters as the source of intense maser lines in interstellar space". Astrophys. Space Sci. 305 (2006) 91-98.

May be a type of dark matter, as claimed by hydrinos:
Badiei, Shahriar; Holmlid, Leif (2002). "Rydberg matter in space: low-density condensed dark matter". Monthly Notices of the Royal Astronomical Society 333: 360. doi:10.1046/j.1365-8711.2002.05399.x.

Has been found in the upper atmosphere of planets.
L. Holmlid, "The alkali metal atmospheres on the Moon and Mercury: explaining the stable exospheres by heavy Rydberg Matter clusters". Planetary Space Sci. 54 (2006) 101-112.

Could Rydberg matter also be present in the solar corona, helping to explain the anomalous elevated temperature and unusual spectral features that were once attributed to "coronium" (http://en.wikipedia.org/wiki/Coronium)? [Broken] Again, as claimed by hydrinos?

There are many lines of evidence pointing to unusual electronic states of hydrogen over many decades, from the weird behavior of hydrogen-saturated palladium, nickel, titanium, etc, to the strange temperature distribution of hydrogen atoms in mixed gas plasmas, to difficult to explain interstellar and coronal spectral lines, etc. etc. which were "explained away" with unconvincing ad hoc classical mechanisms, many of which Mills picked up on and gathered in developing hydrino theory.

Excess energy production arising from a previously unknown mechanism in hydrogen containing systems is real and can be developed and commercialized; Mills has been observing it as "hydrino energy"; along with a lot of other people who have been observing it under various other names (cold fusion, etc). Sporadic reports of "excess heat", "dense hydrogen" or "dense deuterium" in an unusual electronic state, along with related unusual effects in highly loaded metal hydrides, plasmas, etc. go back as far as many decades, are real, but are not "hydrinos". They have to do with previously unanticipated / heretofore poorly understood phenomenon in atom clusters in condensed matter physics; dense clusters of hydrogen or deuterium atoms are capable of otherwise unattainable nuclear interactions (fusion or transmutation), and may also be a room temperature superconductor phase in metal lattices. It seems like Rydberg matter may be the explanation.

Blacklight Power may well be in an advantaged position to develop a real commercial energy production system, especially if Mills is willing to focus less on his theory and seriously go after commercial development. Nonetheless, it is a big engineering challenge to turn low-grade heat from costly materials into a competitive electrical power source.
 
Last edited by a moderator:
  • Like
Likes Dougias
  • #38
Thanks for the extensive summary of papers Scarmani. Will be very helpful as I write up ultra-dense deuterium for "Project Icarus".
 
  • #39
Here are a couple more of the most recent papers, from relatively high impact reputable journals:

http://dx.doi.org/10.1016/j.physleta.2009.06.046 [Broken]
Patrik U. Anderssona and Leif Holmlid (2009). "Ultra-dense deuterium: A possible nuclear fuel for inertial confinement fusion (ICF)". Physics Letters A 373 (34): 3067-70. doi:10.1016/j.physleta.2009.06.046

Abstract
The ejection of deuterons with kinetic energy release (KER) of 630 eV was proved recently by measuring the laser-induced ion time-of-flight (TOF-MS) with two different detectors at different distances [S. Badiei, P.U. Andersson, L. Holmlid, Int. J. Mass Spectrom. 282 (2009) 70]. Realizing that the only possible energy release mechanism is Coulomb explosions, the D–D distance in the ultra-dense deuterium was determined to be constant at 2.3 pm. Using a long TOF-MS path now gives improved resolution. We show the strong effect of collisions in the ultra-dense material, and demonstrate that the kinetic energy of the ions increases with laser pulse power but that the number of ions formed is independent of the laser pulse power. This indicates special properties of the material. We also show that the two forms of condensed deuterium D(1) and D(−1) can be observed simultaneously as well resolved mass spectra of different forms. No intermediate bond lengths are observed. The two forms of deuterium are stable and well separated in bond length. We suggest that they switch rapidly back and forth as predicted by theory. A loosely built form with planar clusters of D(1) is observed here to be related to D(−1) formation.

Impact Factor: 2.174

---

http://dx.doi.org/10.1063/1.3371718
Shahriar Badiei, Patrik U. Andersson, and Leif Holmlid (2010). "Production of ultradense deuterium: A compact future fusion fuel". Applied Physics Letters 96, 124103. doi:10.1063/1.3371718

Abstract
Ultradense deuterium as a nuclear fuel in laser-ignited inertial confinement fusion appears to have many advantages. The density of ultradense deuterium D(−1) is as high as 140 kg cm−3 or 1029 cm−3. This means that D(−1) will be very useful as a target fuel, circumventing the complex and unstable laser compression stage. We show that the material is stable apart from the oscillation between two forms, and can exist for days in the laboratory environment. We also demonstrate that an amount of D(−1) corresponding to tens of kilojoules is produced in each experiment. This may be sufficient for break-even.

Impact Factor: 3.726

---

The later article also references earlier papers from Miley:

"The formation of dense deuterium and hydrogen aggregates inside metals like palladium has been reported by Miley and co-workers. Their results are in good agreement with ours, for example the fact that Coulomb Debye screening means that deuterons can approach with low kinetic energy to a distance of 2–4 pm thus behaving like neutral particles. This is an important factor in the observed low energy nuclear reactions LENR. The distance cited is similar to the bond distance found for ultradense deuterium D1 of 2.3 pm. The superconducting quantum interference device SQUID magnetic measurements provided evidence for superconducting filaments of hydrogen inside Pd with a density up to 10^24 cm−3, possibly in the form of clusters in dislocations."

A. Lipson, B. J. Heuser, C. Castano, G. Miley, B. Lyakhov, and A. Mitin,
Phys. Rev. B 72, 212507 2005.

H. Hora and G. H. Miley, J. Fusion Energy 26, 349 2007.

X. Yang, G. H. Miley, and H. Hora, AIP Conf. Proc. 1103, 450 2009.
 
Last edited by a moderator:
  • #40
Very good. A new paper I haven't seen. The potential of UDD for fusion rockets is amazing. The high density should trap neutrons to add their energy to the exhaust and some fraction of the 3He & T produced should fuse to 4He too. Excellent for rocket exhausts. I'm hopeful of exhaust velocity as high as 18,000 - 24,000 km/s.
 
  • #41
http://dx.doi.org/10.1016/j.physleta.2010.04.055 [Broken]
F. Winterberg (2010). "Ultra-dense deuterium and cold fusion claims". Physics Letters A 374 (27): 2766-71. doi:10.1016/j.physleta.2010.04.055

Abstract
An attempt is made to explain the recently reported occurrence of 14 MeV neutron induced nuclear reactions in deuterium metal hydrides as the manifestation of a slightly radioactive ultra-dense form of deuterium, with a density of 130,000 g/cm3 observed by a Swedish research group through the collapse of deuterium Rydberg matter. In accordance with this observation it is proposed that a large number of deuterons form a “linear-atom” supermolecule. By the Madelung transformation of the Schrödinger equation, the linear deuterium supermolecule can be described by a quantized line vortex. A vortex lattice made up of many such supermolecules is possible only with deuterium, because deuterons are bosons, and the same is true for the electrons, which by the electron–phonon interaction in a vortex lattice form Cooper pairs. It is conjectured that the latent heat released by the collapse into the ultra-dense state has been misinterpreted as cold fusion. Hot fusion though, is here possible through the fast ignition of a thermonuclear detonation wave from a hot spot made with a 1 kJ 10 petawatt laser in a thin slice of the ultra-dense deuterium.

http://en.wikipedia.org/wiki/Friedwardt_Winterberg

---

http://dx.doi.org/10.1016/j.physleta.2010.03.009 [Broken]
Patrik U. Andersson and Leif Holmlid (2010). "Deuteron energy of 15 MK in ultra-dense deuterium without plasma formation: Temperature of the interior of the Sun". Physics Letters A 374 (28): 2856-60. doi:10.1016/j.physleta.2010.03.009

Abstract
Deuterons are released with kinetic energy up to 630 eV from ultra-dense deuterium as shown previously, by Coulomb explosions initiated by ns laser pulses at <10^11 W cm^-2. With higher laser intensity at 10^14 W cm^-2, the initial kinetic energy now observed by TOF-MS with variable acceleration energy is up to 1100 eV per deuteron. This indicates ejection of one deuteron by Coulomb repulsion from two stationary charges in the material. It proves a full kinetic energy release of 1260 eV or a deuteron temperature of 15 MK, similar to the temperature in the interior of the Sun. Plasma processes are excluded by the sharp TOF peaks observed and by the slow signal variation with laser intensity. Deuterons with even higher energy from multiple charge repulsion are probably detected. D + D fusion processes are expected to exist in the ultra-dense phase without plasma formation.
 
Last edited by a moderator:
  • #42
Hi scarmani

Interesting papers. The Winterberg paper is especially interesting as it tries to explain "cold fusion" in terms of UDD formation, which should involve significant energy release of its own. He also discusses fast ignition of a small UDD target to use as a trigger for larger amounts of fusion fuel.

3He can form bosonic Cooper pairs and could potentially be induced to collapse into an ultradense state just like deuterium. As D+3He fusion is largely aneutronic this is a very attractive possibility, making a fusion rocket engine a much more practical prospect for interstellar applications. Mining Uranus for 3He is probably the most efficient means of sourcing the stuff, as it is very rare on Earth and not much more abundant in lunar regolith. Recent studies of Uranus have indicated a somewhat faster rotation rate than the 17.24 hours inferred from its magnetosphere. A day of 16.58 hours means a boost of ~2.7 km/s for a nuclear ramjet launching from its equator. Because of the predominantly H/He atmosphere the top speed of a ramjet is ~10 km/s, meaning only a tiny rocket boost is required for final orbital speed.

But is it needed? Winterberg has suggested that a thermonuclear ignition/detonation wave can confine the neutrons produced by pure D+D fusion sufficiently to thermalise them, transferring their fusion energy to the total reaction products. He estimates exhaust velocities of 19,000 km/s are ultimately possible.
 
Last edited:
  • #43
http://dx.doi.org/10.1017/S0263034610000236
Shahriar Badiei, Patrik U. Andersson, and Leif Holmlid (2010). "Laser-driven nuclear fusion D+D in ultra-dense deuterium: MeV particles formed without ignition". Laser and Particle Beams 28 (02): 313-7. doi:10.1017/S0263034610000236

Abstract
The short D-D distance of 2.3 pm in the condensed material ultra-dense deuterium means that it is possible that only a small disturbance is required to give D+D fusion. This disturbance could be an intense laser pulse. The high excess kinetic energy of several hundred eV given to the deuterons by laser induced Coulomb explosions in the material increases the probability of spontaneous fusion without the need for a high plasma temperature. The temperature calculated from the normal kinetic energy of the deuterons of 630 eV from the Coulomb explosions is 7 MK, maybe a factor of 10 lower than required for ignition. We now report on experiments where several types of high-energy particles from laser impact on ultra-dense deuterium are detected by plastic scintillators. Fast particles with energy up to 2 MeV are detected at a time-of-flight as short as 60 ns, while neutrons are detected at 50 ns time-of-flight after passage through a steel plate. A strong signal peaking at 22.6 keV u−1 is interpreted as due to mainly T retarded by collisions with H atoms in the surrounding cloud of dense atomic hydrogen.

---

"1. INTRODUCTION

...

To investigate the possibility of fusion with a relatively weak laser beam, we have studied the fast particles released from laser impact on ultra-dense deuterium D(-1). The experiments employ time-of-flight (TOF) particle detection with a detector (plastic scintillator), which is only sensitive to the highest kinetic energies of the ejected particles. The energy range for the particles emitted from D(-1) is 6 keV (−3 MeV), with the lower limit given by the scintillator detector. Production of such energetic particles indicates nuclear fusion of the closely located deuterons in the ultra-dense material.

...

2. EXPERIMENTAL

A Nd:YAG (neodymium doped yttrium aluminum garnet) pumped dye laser with a power of <100 mJ per 5 ns long pulse at 10 Hz is used at 564 nm. The laser beam is focused at the center of the ultra-high vacuum chamber by an f = 400 mm lens, giving an intensity of <5 × 1011 W cm−2 at the approximately 100 µm beam waist located in the center of the chamber. Close to the center of the apparatus (Fig. 1), a K doped iron oxide catalyst sample (Meima & Menon, 2001; Holmlid, 2002; Muhler et al., 1992) is used as the emitter to produce D(-1) from deuterium gas at a pressure up to 1 × 10−5 mbar.

...

Further studies (unpublished) of the 50 ns peak show a quadratic signal variation with laser intensity, which is unlikely for photon production but expected for neutrons produced in pair-wise high-energy deuteron collisions.

...

4. CONCLUSIONS

Using a plastic scintillator as detector, fast particles are observed by TOF over a 1.12 m flight distance from the interaction of a pulsed laser beam with ultra-dense deuterium. This interaction is known to give fast deuterons with energy as high as 1.2 keV. Fast particles with energy < 1.8 MeV u−1 are proposed to be protons from D+D fusion, with an initial energy of 3 MeV. Fast particles observed at 50 ns TOF thus with energy 2 MeV after passage through a steel edge are concluded to be neutrons, since protons cannot pass through the steel and X-rays have much shorter TOF. The intense signal peak at 22.6 keV u−1 is proposed to be T and 3He from D+D fusion arriving with such relatively low energy after two collisions with H in the dense cloud of H(1) outside the emitter. Thus, all particles expected from D+D fusion are observed."
 
  • #44
http://dx.doi.org/10.1088/1742-6596/244/3/032036
George H Miley, Xiaoling Yang, Hora Heinrich, Kirk Flippo, Sandrine Gaillard, Dustin Offermann and D Cort Gautier (2010). "Advances in proposed D-Cluster inertial confiment fusion target". Journal of Physics: Conference Series 244 032036. doi:10.1088/1742-6596/244/3/032036

http://iopscience.iop.org/1742-6596/244/3/032036/pdf/1742-6596_244_3_032036.pdf

Abstract
Our recent research has developed a technique for imbedding ultra high density deuterium "clusters" (D cluster) in Palladium (Pd) thin film. Experiments have shown that in Pd these condensed matter state clusters approach metallic conditions, exhibiting super conducting properties. This deuterium cluster is achieved through electrochemically loading-unloading deuterium into a thin metal film, such as Palladium (Pd). During the loading process, Palladium lattice expands significantly due to invasion of deuterium into the interstitial sites. With the large enough stress, some linear lattice imperfections, called dislocations, form at / transformation interface. These dislocation defects form a strong potential trap causing deuterium to condense. In the present study, a new method employing nano-structuring of the Pd is proposed to significantly improve the site density over the target volume, suggesting that a sizable region of the compressed target deuterium can reach densities an order of magnitude higher than possible with prior target designs. This improved cluster packing fraction will enable a significant increase of the fusion reaction burn density, hence the target burn-up efficiency.
 
  • #45
Fascinating! I have read the article but not even close to all the comments here. Will do that soon.
Anyway, what also interests me is extreme weight-to-size ratio.
Might have some potential applications in certain mechanical systems(micro flywheels, etc...)
 
  • #46
Hello Scarmani and others interested in Rydberg matter,

Using some precursor material provided by Holmlid and also some other material synthesized by a chemist colleague, we have been making potassium Rydberg matter for the last six months (since January 2011). We have confirmed some of Holmlid's RF emission results but have different interpretations of others. In particular, I would be interested
if anyone reading this thread has a theory of how this material could transform Coulomb
explosions into large-amplitude magnetic field changes, which we have measured many times.
 
  • #47
Hi kdstephen
I was wondering if anyone else was working with RM. Has your lab experimented with UDD at all?
 
Last edited:
  • #48
No, we are only working with potassium. Even potassium-based RM
has a high energy content of ~4 ev/atom. We are looking at faster
ways of synthesizing it so as to have enough to study. What is your interest
in RM?
 
  • #49
kdstephan said:
No, we are only working with potassium. Even potassium-based RM
has a high energy content of ~4 ev/atom. We are looking at faster
ways of synthesizing it so as to have enough to study. What is your interest
in RM?
The possibility of it making fusion of deuterium much easier than the solid or liquid state.
 
  • #50
Mr

kdstephan said:
Hello Scarmani and others interested in Rydberg matter,

Using some precursor material provided by Holmlid and also some other material synthesized by a chemist colleague, we have been making potassium Rydberg matter for the last six months (since January 2011). We have confirmed some of Holmlid's RF emission results but have different interpretations of others. In particular, I would be interested
if anyone reading this thread has a theory of how this material could transform Coulomb
explosions into large-amplitude magnetic field changes, which we have measured many times.

You should go to Mills Yahoo group and see if he can give a plausible theory to explain your observations. Generally he will answer technical questions, the site group's address is:

http://tech.groups.yahoo.com/group/SocietyforClassicalPhysics
 
  • #51
This is an interesting video from NASA:
Okay, it's handwaving of a sort, but is it also a confirmation of NASA's belief and active involvement in developing LENR?

Respectfully submitted,
Steve
 
Last edited by a moderator:
  • #52
Dotini said:
This is an interesting video from NASA:
Okay, it's handwaving of a sort, but is it also a confirmation of NASA's belief and active involvement in developing LENR?

Respectfully submitted,
Steve

Not really.

While I personally find sufficient demonstration that LENR effects warrant further investigation, I remain skeptical. Furthermore, I am unaware of any clear and convincing demonstrations of any viable commercial device producing useful amounts of net energy.
http://joe.zawodny.com/index.php/2012/01/14/technology-gateway-video/
 
Last edited by a moderator:
<h2>1. What is Ultra-Dense Deuterium (UDD)?</h2><p>Ultra-Dense Deuterium is a form of deuterium, a heavy isotope of hydrogen, that has been compressed to incredibly high densities. This results in a material with unique properties, including high energy density and stability.</p><h2>2. How is UDD created?</h2><p>UDD is created through a process called "ultra-dense fusion", where deuterium gas is compressed using powerful lasers or magnetic fields. This compression causes the deuterium atoms to fuse together, creating the ultra-dense form.</p><h2>3. What makes UDD useful for spacecraft?</h2><p>UDD's high energy density makes it a potential fuel source for spacecraft, as it can provide a lot of energy in a small amount of space. Its stability also makes it a safer alternative to traditional rocket fuels, which are highly volatile.</p><h2>4. Are there any drawbacks to using UDD for spacecraft?</h2><p>One potential drawback is the difficulty in creating and storing UDD. The compression process requires advanced technology and the material must be kept at extremely low temperatures to maintain its stability. Additionally, the cost of producing UDD may be prohibitive for some space missions.</p><h2>5. What research is currently being done on UDD for spacecraft?</h2><p>There are ongoing studies and experiments on the potential use of UDD for spacecraft. Some research focuses on finding more efficient ways to create and store UDD, while others are exploring its potential applications in propulsion systems and energy storage for long-term space missions.</p>

1. What is Ultra-Dense Deuterium (UDD)?

Ultra-Dense Deuterium is a form of deuterium, a heavy isotope of hydrogen, that has been compressed to incredibly high densities. This results in a material with unique properties, including high energy density and stability.

2. How is UDD created?

UDD is created through a process called "ultra-dense fusion", where deuterium gas is compressed using powerful lasers or magnetic fields. This compression causes the deuterium atoms to fuse together, creating the ultra-dense form.

3. What makes UDD useful for spacecraft?

UDD's high energy density makes it a potential fuel source for spacecraft, as it can provide a lot of energy in a small amount of space. Its stability also makes it a safer alternative to traditional rocket fuels, which are highly volatile.

4. Are there any drawbacks to using UDD for spacecraft?

One potential drawback is the difficulty in creating and storing UDD. The compression process requires advanced technology and the material must be kept at extremely low temperatures to maintain its stability. Additionally, the cost of producing UDD may be prohibitive for some space missions.

5. What research is currently being done on UDD for spacecraft?

There are ongoing studies and experiments on the potential use of UDD for spacecraft. Some research focuses on finding more efficient ways to create and store UDD, while others are exploring its potential applications in propulsion systems and energy storage for long-term space missions.

Similar threads

  • High Energy, Nuclear, Particle Physics
Replies
11
Views
1K
Replies
3
Views
1K
Replies
7
Views
4K
  • Sci-Fi Writing and World Building
Replies
21
Views
853
Replies
2
Views
1K
  • Astronomy and Astrophysics
Replies
16
Views
5K
  • Cosmology
Replies
4
Views
1K
Replies
1
Views
10K
Replies
1
Views
3K
Back
Top