Exploring the Double Commutator for Energy Relation

The double commutator is just the energy term, so you can just replace it. That would give you the expected equation.
  • #1
Peeter
305
3

Homework Statement



For
[tex]\begin{align*}H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r})\end{align*} [/tex]

use the properties of the double commutator [itex]\left[{\left[{H},{e^{i \mathbf{k} \cdot \mathbf{r}}}\right]},{e^{-i \mathbf{k} \cdot \mathbf{r}}}\right][/itex] to obtain

[tex]\begin{align*}\sum_n (E_n - E_s) {\left\lvert{{\langle {n} \rvert} e^{i\mathbf{k} \cdot \mathbf{r}} {\lvert {s} \rangle}}\right\rvert}^2\end{align*} [/tex]

Homework Equations



Above.

The Attempt at a Solution



For the commutators I get:

[tex]\begin{align*}\left[{H},{ e^{i \mathbf{k} \cdot \mathbf{r}}}\right]&= \frac{1}{{2m}}e^{i \mathbf{k}\cdot \mathbf{r}} \left((\hbar\mathbf{k})^2 + 2 (\hbar \mathbf{k}) \cdot \mathbf{p} \right)\end{align*} [/tex]

and
[tex]\begin{align*}\left[{\left[{H},{e^{i \mathbf{k} \cdot \mathbf{r}}}\right]},{e^{-i \mathbf{k} \cdot \mathbf{r}}}\right]&=- \frac{1}{{m}} (\hbar \mathbf{k})^2 \end{align*} [/tex]

I have also reduced the energy expression as follows to something just involving the expectation of [itex]\mathbf{k} \cdot \mathbf{p}[/itex]

[tex]\begin{align*}\sum_n (E_n - E_s) {\left\lvert{{\langle {n} \rvert} e^{i\mathbf{k} \cdot \mathbf{r}} {\lvert {s} \rangle}}\right\rvert}^2&=\sum_n (E_n - E_s) {\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} {\lvert {n} \rangle} {\langle {n} \rvert} e^{i\mathbf{k} \cdot \mathbf{r}} {\lvert {s} \rangle} \\ &=\sum_n {\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} H {\lvert {n} \rangle} {\langle {n} \rvert} e^{i\mathbf{k} \cdot \mathbf{r}} {\lvert {s} \rangle} -{\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} {\lvert {n} \rangle} {\langle {n} \rvert} e^{i\mathbf{k} \cdot \mathbf{r}} H {\lvert {s} \rangle} \\ &={\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} H e^{i\mathbf{k} \cdot \mathbf{r}} {\lvert {s} \rangle} -{\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} e^{i\mathbf{k} \cdot \mathbf{r}} H {\lvert {s} \rangle} \\ &={\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} \left[{H},{e^{i\mathbf{k} \cdot \mathbf{r}}}\right] {\lvert {s} \rangle} \\ &=\frac{1}{{2m}} {\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} e^{i \mathbf{k}\cdot \mathbf{r}} \left((\hbar\mathbf{k})^2 + 2 (\hbar \mathbf{k}) \cdot \mathbf{p} \right){\lvert {s} \rangle} \\ &=\frac{1}{{2m}} {\langle {s} \rvert} (\hbar\mathbf{k})^2 + 2 (\hbar \mathbf{k}) \cdot \mathbf{p} {\lvert {s} \rangle} \\ &=\frac{(\hbar\mathbf{k})^2}{2m} + \frac{1}{{m}} {\langle {s} \rvert} (\hbar \mathbf{k}) \cdot \mathbf{p} {\lvert {s} \rangle} \\ \end{align*} [/tex]

I figure there is some trick to evaluating that last expectation value related to the double commutator, so expanding the expectation of that seems appropriate

[tex]\begin{align*}-\frac{1}{{m}} (\hbar \mathbf{k})^2 &={\langle {s} \rvert} \left[{\left[{H},{e^{i \mathbf{k} \cdot \mathbf{r}}}\right]},{e^{-i \mathbf{k} \cdot \mathbf{r}}}\right] {\lvert {s} \rangle} \\ &={\langle {s} \rvert} \left[{H},{e^{i \mathbf{k} \cdot \mathbf{r}}}\right] e^{-i \mathbf{k} \cdot \mathbf{r}}-e^{-i \mathbf{k} \cdot \mathbf{r}}\left[{H},{e^{i \mathbf{k} \cdot \mathbf{r}}}\right] {\lvert {s} \rangle} \\ &=\frac{1}{{2m }} {\langle {s} \rvert} e^{ i \mathbf{k} \cdot \mathbf{r}} ( (\hbar \mathbf{k})^2 + 2 \hbar \mathbf{k} \cdot \mathbf{p}) e^{-i \mathbf{k} \cdot \mathbf{r}}-e^{-i \mathbf{k} \cdot \mathbf{r}} e^{ i \mathbf{k} \cdot \mathbf{r}} ( (\hbar \mathbf{k})^2 + 2 \hbar \mathbf{k} \cdot \mathbf{p}) {\lvert {s} \rangle} \\ &=\frac{1}{{m}} {\langle {s} \rvert} e^{ i \mathbf{k} \cdot \mathbf{r}} (\hbar \mathbf{k} \cdot \mathbf{p}) e^{-i \mathbf{k} \cdot \mathbf{r}}-\hbar \mathbf{k} \cdot \mathbf{p} {\lvert {s} \rangle} \end{align*} [/tex]

but if I take this further I just get

[tex]\begin{align*}-\frac{1}{{m}} (\hbar \mathbf{k})^2 = -\frac{1}{{m}} (\hbar \mathbf{k})^2 \end{align*} [/tex]

which isn't very helpful. I don't actually like the approach I've used, where I took the magic expression and blundered through it attempting to get the desired answer.

Can anybody supply a tip that uses a more fundamental principle, where after a natural sequence of steps would arrive and the desired end result (instead of fluking upon it by lucky algebraic manipulation). I'd also settle for the trick as a last resort, or a hint of what it could be.

Also, does this energy relationship have a name?
 
Physics news on Phys.org
  • #2


I assume your bold letters represent vectors and not neccessarily operators? i.e. k is not an operator?
 
  • #3


Yes:

[tex]\mathbf{k} \cdot \mathbf{r} = k_x x + k_y y + k_z z[/tex]

and all the k_n's are just numbers, not operators.
 
  • #4


In the third line you already have the double commutator.
Try writing the double commutator explicitly to see what you need to get. The last term in your line is almost correct if you combine the exponentials. In the first you only need some justification to swap the minus to the right (I can give another hint there if you want)
 
  • #5


Using

[tex]\hbar \mathbf{k} \cdot \mathbf{p} e^{-i \mathbf{k} \cdot \mathbf{r}} = e^{-i \mathbf{k} \cdot \mathbf{r}} \left( -(\hbar \mathbf{k})^2 + \mathbf{k} \cdot \mathbf{p} \right)[/tex]

I can try your suggestion (as I interpretted it) of swapping the exponentials in the first term of the last line:
[tex]\begin{align*}\frac{1}{{m}} {\langle {s} \rvert} e^{ i \mathbf{k} \cdot \mathbf{r}} (\hbar \mathbf{k} \cdot \mathbf{p}) e^{-i \mathbf{k} \cdot \mathbf{r}}-\hbar \mathbf{k} \cdot \mathbf{p}{\lvert {s} \rangle} \\ &=\frac{1}{{m}} {\langle {s} \rvert} (-(\hbar \mathbf{k})^2 + \hbar \mathbf{k} \cdot \mathbf{p})-\hbar \mathbf{k} \cdot \mathbf{p}{\lvert {s} \rangle} \\ &=\frac{1}{{m}} {\langle {s} \rvert} -(\hbar \mathbf{k})^2 {\lvert {s} \rangle}\end{align*} [/tex]

But, like I said, this just takes me full circle.
 
  • #6


The last part of your calculation is just going full circle. You don't have to use your "trick". You can transform your following line to get the double comm.
[tex]
\begin{align*}\sum_n (E_n - E_s) {\left\lvert{{\langle {n} \rvert} e^{i\mathbf{k} \cdot \mathbf{r}} {\lvert {s} \rangle}}\right\rvert}^2&={\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} H e^{i\mathbf{k} \cdot \mathbf{r}} {\lvert {s} \rangle} -{\langle {s} \rvert} e^{-i\mathbf{k} \cdot \mathbf{r}} e^{i\mathbf{k} \cdot \mathbf{r}} H {\lvert {s} \rangle} \end{align*}
[/tex]
Now you should write the double commutator with operators, i.e. without using any commutation relations and compare with this line. Then you should see what you need to transform.
 
  • #7


Thanks a lot. I've got it now. My problem was not knowing how the two sign variants of these Hamiltonian exponential sandwiches compared:

[tex]\begin{align*}e^{-i\mathbf{k} \cdot\mathbf{r}} &H e^{i\mathbf{k} \cdot\mathbf{r}} \\ e^{i\mathbf{k} \cdot\mathbf{r}} &H e^{-i\mathbf{k} \cdot\mathbf{r}} \\ \end{align*} [/tex]

Expanding them out (the dumb and simple way) with [itex]\cos + i\sin[/itex] I see that they have the same real part. Since they are both also Hermitian, the expectation value of each is real and only these (equal) real parts can contribute to the respective expectation values. That's enough to equate (up to a constant factor of two) the expectation of the double commutator and this (unnamed?) weighted energy difference sum expression.
 

What is the Double Commutator for Energy Relation?

The Double Commutator for Energy Relation is a mathematical relationship that describes the behavior of energy in quantum systems. It involves calculating the commutator of two operators that represent the system's energy, and using this to determine the uncertainty in the energy measurement.

Why is the Double Commutator for Energy Relation important?

The Double Commutator for Energy Relation is important because it allows scientists to make precise measurements of energy in quantum systems. This is crucial for understanding the behavior of particles at the atomic and subatomic level, and has applications in fields such as quantum mechanics and particle physics.

How is the Double Commutator for Energy Relation calculated?

The Double Commutator for Energy Relation is calculated by taking the commutator of two operators: the Hamiltonian, which represents the system's energy, and the time evolution operator. The result of this calculation is then used to determine the uncertainty in the energy measurement.

What is the significance of the uncertainty in the energy measurement?

The uncertainty in the energy measurement is significant because it represents the limit to which we can know the precise energy of a quantum system. This uncertainty is a fundamental aspect of quantum mechanics and is related to the Heisenberg uncertainty principle.

What are the practical applications of the Double Commutator for Energy Relation?

The Double Commutator for Energy Relation has many practical applications in fields such as quantum computing, quantum cryptography, and quantum information theory. It also plays a crucial role in the development of new technologies and materials that rely on quantum effects.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
378
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
0
Views
288
  • Advanced Physics Homework Help
Replies
1
Views
914
  • Advanced Physics Homework Help
Replies
1
Views
811
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
9
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
853
Back
Top