Arguments Against LQG: Summary & Analysis

  • Thread starter jdstokes
  • Start date
  • Tags
    Lqg
In summary: In other words, maybe the methods we're using are too limited, and we're missing something amazing that string theory is trying to tell us.In summary, the conversation touches on the arguments in support of LQG over string theory, such as its incorporation of gauge symmetries and chiral matter, and the natural emergence of quarks and leptons. However, there are also arguments against LQG, including its background dependence and issues with the discreteness of geometrical operators and infinite degeneracy of states. The relevance of fermions always being in the fundamental representation of the gauge group in relation to string theory is also discussed
  • #1
jdstokes
523
1
I've read a lot of arguments in support of LQG over string theory, mainly focusing on ST's lack of background independence.

I'm also told that there are some pretty good arguments against LQG. What are some of these arguments? Have they been summarized somewhere?
 
Physics news on Phys.org
  • #3
Who is the author of this blog?
 
  • #4
http:///en.wikipedia.org/wiki/Luboš_Motl" [Broken]
 
Last edited by a moderator:
  • #5
quasar987 said:
Who is the author of this blog?

Lubos Motl, a man who is, by any reasonable standard, as mad as a bag of frogs.
 
  • #6
It is about time you string lqg guys came out, reveal what you have, i guess it will not get to many hot under the collar, unless they have a good imagination.
 
  • #7
shoehorn said:
Lubos Motl, a man who is, by any reasonable standard, as mad as a bag of frogs.

These statements are highly frame dependent.

jdstokes said:
I've read a lot of arguments in support of LQG over string theory, mainly focusing on ST's lack of background independence.

I'm also told that there are some pretty good arguments against LQG. What are some of these arguments? Have they been summarized somewhere?

For me, the biggest thing that string theory has going is the natural incorporation of gauge symmetries and chiral matter. We KNOW that gauge symmetries and chiral matter exist in our universe, and these mathematical structures occur all over the place in the edifice of string theory.

Another thing we notice about our universe is that all of the matter lives in small representations of gauge groups---fermions are ALWAYS in the fundamental representation of the gauge group. In string theory, this is the typical state of affairs---that is, we don't have to work too hard to see everything we need to describe nature just fall out of the theory "for free".

For example, suppose you want to build a theory based on open strings. You go through the quantization procedure and have a perfectly happy theory, with no gauge symmetries. But now, you talk to Joe Polchinsky about your theory, and tells you "Ah, there are things in your theory you MISSED, called d branes, that MUST be there." Once you include d-branes, you find that closed string MUST begin and end on them. Now you get creative, and you imagine taking stacks of dbranes (which are already in your theory) and intersecting various stacks at different angles. Suppose you take N dbranes and intersect them with M dbranes---if you study the different types of open strings that you can have, you find out that you have EXACTLY and SU(N)xSU(M) gauge theory, with matter in the fundamental representations of the gauge group. And all of this just by playing around with states that are already in your theory.

This, to me, is the most remarkable thing about string theory---it tells you how to get quarks and leptons, and non-Abelian gauge groups. String theory is a more ambitious program than the other approaches to QG---they aren't trying to explain the standard model, they're ONLY trying to quantize gravity. In fact, all of the attempts to explain where the gauge groups actually COME from have failed. In string theory, this was done as early as the mid to late eighties.

{irrelevant comment removed - Zz}
 
Last edited by a moderator:
  • #8
BenTheMan: that looks like an argument for ST, not an argument against LQG. :tongue:
 
  • #9
Hi Ben,

Thanks for your comments. I have a couple of questions for you.

I didn't understand the relevance of the statement

BenTheMan said:
fermions are ALWAYS in the fundamental representation of the gauge group.

because this is not true of, e.g., SU(5) or SO(10) grand unified theories. I don't understand what this says about string theory?

I'm not sure about the gauge group problem, but I read about an idea in Lee Smolin's book about treating particles as braids in the spin-network. Does this idea hold much water?
 
  • #10
jdstokes said:
I've read a lot of arguments in support of LQG over string theory, mainly focusing on ST's lack of background independence.

Not LQG per se, but LQC's present stage seems somewhat background dependent (Section 5.1): http://relativity.livingreviews.org/Articles/lrr-2008-4/ [Broken]

jdstokes said:
I'm also told that there are some pretty good arguments against LQG. What are some of these arguments? Have they been summarized somewhere?

Are the spectra of geometrical operators in Loop Quantum Gravity really discrete?
Bianca Dittrich, Thomas Thiemann
http://arxiv.org/abs/0708.1721

Infinite Degeneracy of States in Quantum Gravity
Jonathan Hackett, Yidun Wan
http://arxiv.org/abs/0811.2161
 
Last edited by a moderator:
  • #11
jdstokes said:
because this is not true of, e.g., SU(5) or SO(10) grand unified theories. I don't understand what this says about string theory?

Ahh good. I should be more careful with what I say in the following :)

I perhaps should have made a different statement, that all of the things we have observed so far live is representations smaller than the adjoint, but you would have pointed out to me the large higgs representations that are needed in GUTs in general. The statement is correct in the context of the standard model, but is not true in SU(5), where the fermions come in a 5* + 10, or SO(10) where the fermions live in the spinor rep. Of course, very few people believe in SU(5) anymore (the minimal SUSY models are firmly dead by dim 5 and dim 6 proton decay, see Pierce and Murayama, http://arxiv.org/abs/hep-ph/0108104), and evading the constraints with SO(10) gets a bit tight (see "SUSY GUTs under siege" by Dermisek, Mafi, and Raby).

So what DOES this say about strings?

First of all, when you get your hands dirty with string models, you find that it is difficult to get representations larger than the adjoint. In fact, I only know of one way to get large representations (i.e. bigger than adjoints) out of string theory. This is in a paper by Kieth Dienes here: http://arxiv.org/abs/hep-th/9604112. Conversely, I know of TONS of ways to get small representations out of string theory. "Small" here means "smaller than adjoint".

So, the question again comes: what does this say for the SO(10) models that require higgses in the 45 + 120 + 210 + ... representations. I would say that the question isn't "what does this say about strings", but "what does this say about SUSY GUTs"? I don't know what the right answer is, but I have never seen a string model that gets something like the complicated SO(10) models that people build. (The Dienes paper only shows that it is possible, and I know one of his students is working on that.) My feeling is that these models don't have a good stringy embedding. (Please, don't take my word for it---I'd LOVE to see some realistic SO(10) models come out of string theory :) )

Of course, you can even construct models that don't NEED SO(10) or E6---we certainly have never seen SO(10) or E6. You can break E8 (or SO(32))directly to the standard model at the string scale and have a perfectly happy model. Or, you can view the unification of forces as an accident, and imagine that we live on intersecting stacks of 6 branes wrapped around various cycles of various Calabi Yau shapes. Or (...) Getting particle physics from string theory is a robust field, with many approaches. But from what I know, you are more or less limited to the smallest (adjoint or smaller) representations of whatever gauge group you have.

I'm not sure about the gauge group problem, but I read about an idea in Lee Smolin's book about treating particles as braids in the spin-network. Does this idea hold much water?

Have you heard of a successful model? The absolute best attempt that I've seen predicts a fourth generation, which is pretty well eliminated by Z decays and astrophysical constraints. Of course, Nature could be weird like that, but I don't think so.

There was a Connes' non-commutative geometry standard model a few years ago, but that was firmly ruled out earlier this year by CDF, when they killed a higgs at 160 GeV. (Of course, as a good model builder, Connes found a way to fix his model, but this is the same things that people deride string theorists for...) And, of course, there is the Lisi model which has nice cartoons, but probably can't describe Nature.

If getting standard model looking things out of other QG (notice absence of L!) approaches were easy (as is the case in string theory), then someone would have done it. This means that it is probably hard, or not possible. "Hard" doesn't mean that it should be eliminated from the spectrum of possibilities, it just makes it more difficult to be optimistic about it being true.

But either way, in my mind this is the main argument for string theory---not only is it a finite theory of quantum gravity, it contains non-Abelian gauge symmetries and chiral matter, and it even contains the right KIND of chiral matter (small reps).
 
  • #12
The arguments against LQG are more technical than anything else. The weird nonseperable hilbert space really grates me more than anything else about the formalism. I don't mind lorentz breaking so long as you can convince me that its smaller than observation bounds, eg tiny etc etc.

Still you have to realize even the best models on the market are extremely naive, the inclusion of matter (braids or whatever) is poorly developed and not taken seriously by phenomenologists. I hate to say it, but the immense majority of scientists are highly critical of the subject, despite all the popularizing on the internet and by a few silly books.

What might be interesting about the program is if they are successful or not in the whole canonical quantization of gravity endeavour. For years that was a dead end, and the certain success they've had might be an indication that what they've worked on is at least valid in some limit or as a toy model. So interesting in its own right.

Still the entire field is very, very far from being fleshed out. Its a bit like string theory or Regge Calculus was in the 70s, or nuclear physics in the 60s. Many calculations can still go wrong in principle and they don't really have a smoking gun yet to draw the best people in. Of course this can be said about most QG programs. For instance the much talked about noboundary proposal and euclidean path integral advocated by Hawkins et al is also greeted with extreme skepticism b/c of how naive it is.
 
  • #13
BenTheMan said:
There was a Connes' non-commutative geometry standard model a few years ago, but that was firmly ruled out earlier this year by CDF, when they killed a higgs at 160 GeV.

No, just a specific model was rulled out. Forget about when he admited defeat on a blog,with a sad peom. He came up with a small modification, that I don't yet understand, about 3 months after later, that still fits all of STM, including lower mass higgs...

As for LQG, expecting that something gravitational weird can be measurable, that cannot be aproximated by a more classical theory, is hopeless, pretty much like string theory. But unlike string theory, it does not even try to tackle the oter forces. Anywaym, that is a sad state of affairs for both fields.
 
  • #14
As a side note to the motivation of this discussion, I'd like to ask if anybody would have strong arguments to claim that string theory, loop quantum gravity, and Connes' noncommutative geometry must be incompatible with each other. It might as well be, to me, that they are different approaches and ingredient to an unique solution.
 
  • #15
Thats a little hard to say exactly without comparing specific LQG theories, with a particular NC model and string theory with a given vacua. I'd guess lorentz breaking/nonbreaking would be a big indicator.

String theory doesn't really make sense without the inclusion of matter, there's really no wiggle room possible for decoupling the matter degrees of freedom from the gravitational ones so hard to make contact with the better understood LQG models. In a related fashion, many LQG versions seem to have Einstein-Hilbert to all order, which cannot at face value be compatible with ST unless there's a duality somewhere (but then the physical predictions don't necessarily match either)

The NC models seem to have low energy matter relationships that's close to something like a nonsupersymmetric GUT and I guess that could be made close to st. but the high energy predictions looks completely different from what I've read.
 
  • #16
humanino said:
As a side note to the motivation of this discussion, I'd like to ask if anybody would have strong arguments to claim that string theory, loop quantum gravity, and Connes' noncommutative geometry must be incompatible with each other. It might as well be, to me, that they are different approaches and ingredient to an unique solution.

For what it's worth, I suspect that Lee Smolin would argue they can't be different paths to the same solution because LQG is "background independent" where as ST is "background dependent".
This conclusion seems based on the argument that a fixed background model can't be made to agree in general with a model lacking such a fixed background.
I don't have the tools to judge wether this is correct, but it sounds convincing while reading his book.
 
  • #17
MTd2 said:
No, just a specific model was rulled out. Forget about when he admited defeat on a blog,with a sad peom. He came up with a small modification, that I don't yet understand, about 3 months after later, that still fits all of STM, including lower mass higgs...

This is all model building :) Correct me if I'm wrong, but the abstract of this paper makes a pretty specific prediction: http://arxiv.org/abs/hep-th/0610241. The timbre of the paper is certainly "This is a prediction of the model". So either there IS a prediction and it's wrong, or there never WAS a prediction. If it's the latter, the model is no better or worse than any of the other models that people build using SUSY or technicolor.
 
  • #18
There is a specific testable prediction of a LQG model relating to the fine-scale structure of the vacuum. Fotini Markopoulou predicted years ago that we would see a frequency-dependent delay in the arrival-times of gamma rays from GRBs. Her idea was that the more energetic gamma rays would interact more frequently with the space through which they propagate, and would therefor be slowed more than EM of lower frequencies. Though she hung her observational hopes on GLAST, such an effect may already have been recorded by the MAGIC project. If such a frequency-dependent delay can be observed and confirmed multiple times, it would help to rule out source-based systematics. If the magnitude of the delays could also be shown to be proportional to the redshift of the source, things are going to get exciting.
 
  • #19
humanino said:
As a side note to the motivation of this discussion, I'd like to ask if anybody would have strong arguments to claim that string theory, loop quantum gravity,

There were some thoughts about 2005 in which LQG was a kind of limit of M-Theory just like superstrings. Sergei Gukou and Ashok Sen were guys that wondered about that. Some simple things made that conjecture invalide... But I guess some recent articles made that possible, I think.

I will post a thread about that later.
 
  • #20
I do not know if this is the best paper but it is the best i can find, nor do i pretend to even understand all of it, but it doe's seem to give a good overview.

http://arxiv.org/abs/gr-qc/0501053

G. Amelino-Camelia, C. Lämmerzahl, A. Macias, H. Müller
(Submitted on 17 Jan 2005)
Abstract: We give an overview of ongoing searches for effects motivated by the study of the quantum-gravity problem. We describe in greater detail approaches which have not been covered in recent ``Quantum Gravity Phenomenology'' reviews. In particular, we outline a new framework for describing Lorentz invariance violation in the Maxwell sector. We also discuss the general strategy on the experimental side as well as on the theoretical side for a search for quantum gravity effects. The role of test theories, kinematical and dymamical, in this general context is emphasized. The present status of controlled laboratory experiments is described, and we also summarize some key results obtained on the basis of astrophysical observations.
 
  • #21
I found this one, among the citations for the above article:

Quantum Gravity Phenomenology
Authors: Giovanni Amelino-Camelia
(Submitted on 2 Jun 2008)

http://arxiv.org/abs/0806.0339

Abstract: I review the present status of the development of Quantum Gravity Phenomenology. Among the accomplishments of this young research area I stress in particular the significance of studies which established that some appropriate data analyses provide sensitivity to effects introduced genuinely at the Planck scale. The objective of testing/falsifying theories that provide comprehensive solutions to the quantum-gravity problem appears to be still rather far, but we might soon be in a position to investigate some "falsifiable quantum-gravity theories of not everything".
 
  • #22
gendou2 said:
For what it's worth, I suspect that Lee Smolin would argue they can't be different paths to the same solution because LQG is "background independent" where as ST is "background dependent".
This conclusion seems based on the argument that a fixed background model can't be made to agree in general with a model lacking such a fixed background.
I don't have the tools to judge wether this is correct, but it sounds convincing while reading his book.
Newton's theory is not BI however it is known to be a low energy limit of GR. Incidentally, Lee's last paper was on the landscape of ST. It might suggest, considering he was paving the way to search a link between ST and LQG, that he still has interest in ST.

The weak anthropic principle and the landscape of string theory
The case for background independence
 
  • #23
humanino said:
... Lee's last paper was on the landscape of ST. It might suggest, considering he was paving the way to search a link between ST and LQG,
The weak anthropic principle and the landscape of string theory
...

http://arxiv.org/abs/0901.2414
"It is interesting to note that while the understanding of the string landscape is evolving, present evidence on the nature of the landscape allows such an argument to be made, leading to the conclusion that the WAP favors a negative value for the cosmological constant, Lambda, in contradiction to the result of astronomical observations. The viability of applying the WAP to string theory then requires that either there are found an infinite discretum of anthropically allowed vacua for Lambda >0, or the recently found infinite discretum of solutions for Lambda <0 be reduced to a finite value."

Smolin's co-author on this one is George Ellis, a well-known cosmologist who earlier co-authored The Large Scale Structure of Space Time with Stephen Hawking.

Basically they argue that applying the Weak Anthropic Principle to the String Landscape tends to discredit string/M as a whole.
The argument goes as follows. Suppose one assumes that our universe was chosen at random from the habitable sector of the String Landscape as presently understood. Then it is infinitely more likely to have Lambda < 0----at least as things stand presently. (Only a finite discretuum with Lambda >0 and an infinite one with negative cosmo constant.) Therefore String/M predicts negative Lambda.

But at least so far, observations point to positive Lambda. This would seem to discredit String/M at least with it's present Landscape of possible vacuua, if one follows Anthropic reasoning.

My impression is that this paper does not "pave the way" towards a reconciliation.
Nor is it really a serious attack on Stringy thinking. At least I do not consider it anti-string.
What I do see is that Ellis and Smolin disapprove of resorting to Anthropic Landscape arguments---and in that they agree with a considerable part of the string research community itself!
I think the main thing their paper is intended to show is what a liability the Anthropic Landscape is to string/M.
 
Last edited:
  • #24
marcus said:
My impression is that this paper does not "pave the way" towards a reconciliation.
When I said that, I was talking about the other paper.
marcus said:
I think the main thing their paper is intended to show is what a liability the Anthropic Landscape is to string/M.
I personnally did not take too seriously the "result" that string theory has to say about the cosmological constant sign. They are very clear themselves about the fact that our current understanding is limited.

Not even to mention the fact that, a situation which I would find wonderful, if one could prove that the landscape has a unique solution compatible with any known experimental fact, that would not by itself disprove string theory because the infinite (?) remaining landscape is wrong. That would mean that we have found a sufficient constraint for string theory to become fully predictive !
 
  • #25
Exactly! In that case Anthropic reasoning would be superseded and laid to rest. I was just about to add that the other paper (Case for B.I.) does make a constructive suggestion to string theorists---working on a nonperbative background independent version---and in that sense does pave the way to more collaboration. I didn't realize that is the recent paper you meant.
But I see you already made that point.

A propos of prospects for linkage, Smolin is one of a dozen or so Loop community people (Loop and allied approaches) that will be taking part in an interesting weeklong symposium in early July (if all goes as planned) bringing together roughly the same number of String/M and Noncommutative QFT people. This is the 25th Max Born symposium at Warsaw.

What you say in general terms (not about the Smolin/Ellis paper specifically) I think is very true---the time is ripe for an exchange of ideas and methods. A lot of people in several areas seem eager for this and ready to take the initiative. I will get the link to the XXV Max Born preliminary list of speakers
Warsaw 29 June-3 July
http://www.ift.uni.wroc.pl/~planckscale/
http://www.ift.uni.wroc.pl/~planckscale/index.html?page=speakers
http://www.fuw.edu.pl/~meissner/home.html
 
Last edited:

What is LQG and why are there arguments against it?

LQG stands for Loop Quantum Gravity and it is a theoretical framework that attempts to reconcile General Relativity and Quantum Mechanics. There are arguments against LQG because it has not yet been fully developed and there are still many unanswered questions and challenges within the theory.

What are the main criticisms of LQG?

Some of the main criticisms of LQG include its inability to fully incorporate matter and particles, its reliance on specific mathematical techniques, and its lack of a coherent and testable prediction. Additionally, some critics argue that LQG is not a unified theory and does not address all of the fundamental questions of physics.

Are there any alternative theories to LQG?

Yes, there are other theories that attempt to unify General Relativity and Quantum Mechanics, such as String Theory and Causal Dynamical Triangulations. However, these theories also have their own challenges and unanswered questions.

What are the potential implications if LQG is proven to be incorrect?

If LQG is proven to be incorrect, it would mean that we are still far from understanding the fundamental nature of space and time. It would also mean that other theories and approaches would need to be explored in order to find a unified theory of physics.

What is being done to address the arguments against LQG?

Scientists are continuously working to develop and refine LQG, addressing its criticisms and challenges. They are also exploring other theories and approaches, as well as conducting experiments and observations, in order to gain a better understanding of the fundamental laws of the universe.

Similar threads

  • Beyond the Standard Models
Replies
7
Views
1K
Replies
47
Views
4K
  • Beyond the Standard Models
2
Replies
48
Views
14K
  • Special and General Relativity
Replies
12
Views
137
  • Beyond the Standard Models
Replies
24
Views
4K
  • Beyond the Standard Models
Replies
12
Views
11K
  • Beyond the Standard Models
Replies
23
Views
13K
  • STEM Academic Advising
Replies
1
Views
502
  • Beyond the Standard Models
Replies
10
Views
4K
  • Beyond the Standard Models
Replies
22
Views
4K
Back
Top