Why s-p orbital overlap is stronger than s-s overlap?

In summary: Thanks you very much ZealScience.But sorry i wasn't talking about hybridization or hybridization overlap or anything; just the simple s and p orbitals overlapping and increasing electron density in binding region, forming a bond.
  • #1
tasnim rahman
70
0
will the same amount of charge present at higher concentration in the binding region(between two nuclei), give a stronger bond, compared to the same amount of charge present at a lower concentration in the binding region? if so, could it be explained. is this the reason why s-p overlap is stronger than s-s overlap? need quick help
thank you
 
Chemistry news on Phys.org
  • #2
It is more a matter of getting the electrons of each atom as close as possible to the nuclei of the other atoms while avoiding other electrons and satisfying the Pauli exclusion principle.

I think (off the cuff here) that the stronger s-p overlap is due to the "sharpness" of the p orbitals which allow the electrons of e.g. the carbon atom's orbits to penetrate deeper toward the hydrogen nucleus in say Methane.

We must always remember that the orbitals are solutions to the quantum mechanics of a single electron in a central potential. Once atoms begin combining, and we consider many electrons these are only approximations. The orbitals are distorted and the ultimate answers to "why" lie in solving the (generally intractable) quantum many body problem.
 
  • #3
Thanks very much for the answer Jambaugh. That must mean the closer the electrons are to each nucleus, the stronger the attraction and, so the stronger the bond, right? Thanks again.
 
  • #4
tasnim rahman said:
Thanks very much for the answer Jambaugh. That must mean the closer the electrons are to each nucleus, the stronger the attraction and, so the stronger the bond, right? Thanks again.

You have to be a little careful with this sort of statement. As jambaugh said, s & p orbitals are features of atoms, and lose their meanings in molecules. However, one can draw the following rationalizations about your question without getting into too much trouble (I think):

1) p-orbitals are more directional than s-orbitals (which are isotropic), therefore as jambaugh said, they are better suited to forming directional covalent bonds via orbital overlap.

2) p-orbitals have a node at the nucleus, so a p-electron "feels" the effect of it's own nucleus to a lesser extent than an s-electron. This means that a p-electron is more "available" to feel the effects of the nucleus on a neighboring atom than an s-electron.

3) These sort of arguments are only rationalizations, and should be confined to comparisons of systems with maximum similarity .. e.g. it would be hard to predict relative strengths of a 1-s orbital overlapping with a 2p orbital vs a 3s orbital based solely on these arguments, or even a 2s orbital on oxygen vs. a 2p orbital on carbon.
 
  • Like
Likes Harshit Sharma
  • #5
Thanks very much for the answer SpectraCat.But could it be explained in terms of, charge density, as in charge concentration; and also, amount of charge in the binding region? As much as I understood, the closer electrons are to each nuclei, getting more of their attractions, the stronger the bond, am I getting it right? I just want to have a qualitative idea, without the wave equations, that is.
 
  • #6
tasnim rahman said:
Thanks very much for the answer SpectraCat.But could it be explained in terms of, charge density, as in charge concentration; and also, amount of charge in the binding region? As much as I understood, the closer electrons are to each nuclei, getting more of their attractions, the stronger the bond, am I getting it right? I just want to have a qualitative idea, without the wave equations, that is.

Thinking in terms of "charge clouds" you have to also view the electron's quantum orbits in terms of time. The "cloud" of charge density one visualizes is a time averaged density. This is important because you also must consider how well electrons can anti-correlate their positions over time so as to "avoid each other" while "getting cozy" with the protons in the nuclei. The electron's fermionic nature can't be totally ignored even in such qualitative musings as we are considering here.
 
  • Like
Likes Harshit Sharma
  • #7
Thanks very much Jambaugh.So, assuming similar spin interactions(spins pair when the bond forms) and similar electronic repulsions, for both s-s and s-p, the s-p bond will be stronger because, the p electron density can get comparatively closer to each nucleus, forming a stronger bond,is this right?
 
  • #8
You mean s orbital and sp hibridization orbital or overlap, or simply overlap of s orbital and p orbital lying down (horizontal axis)?

I guess a dumbell p lying down overlap makes it closer between atoms than a spherical s orbital does.
And the sp orbital is deflected to the bonding site (where the resonnance happens) thus more resonnance stronger bond.
 
  • #9
Thanks you very much ZealScience.But sorry i wasn't talking about hybridization or hybridization overlap or anything; just the simple s and p orbitals overlapping and increasing electron density in binding region, forming a bond. therefore as far as I understood I believe that s-p overlap is stronger than s-s overlap(assuming similar charge density in binding region in both cases), because it allows the charge density to get closer to each nucleus, forming a stronger bond.
 
  • #10
tasnim rahman said:
Thanks very much Jambaugh.So, assuming similar spin interactions(spins pair when the bond forms) and similar electronic repulsions, for both s-s and s-p, the s-p bond will be stronger because, the p electron density can get comparatively closer to each nucleus, forming a stronger bond,is this right?

I think so...with all aforementioned qualifications.
 
  • #11
tasnim rahman said:
Thanks you very much ZealScience.But sorry i wasn't talking about hybridization or hybridization overlap or anything; just the simple s and p orbitals overlapping and increasing electron density in binding region, forming a bond. therefore as far as I understood I believe that s-p overlap is stronger than s-s overlap(assuming similar charge density in binding region in both cases), because it allows the charge density to get closer to each nucleus, forming a stronger bond.

If you mean just s and p probably you can look at the wavefunction or probability distribution diagram of the p-orbital. You will find that comparing to s-orbital, p spend more time. s have more possibility near the nucleus, but less in the bonding site
 
  • #12
ZealScience said:
If you mean just s and p probably you can look at the wavefunction or probability distribution diagram of the p-orbital. You will find that comparing to s-orbital, p spend more time. s have more possibility near the nucleus, but less in the bonding site
s orbitals spend more time close to their respective nuclei, and less in the binding region. p orbitals spend more time in the binding region; that is close both the nuclei; thus s-p overlap forming a stronger bond than s-s overlap. Thanks again for help, ZealScience.
 
  • #13
It is certainly not true in general that s-p overlap is stronger than s-s overlap and even where it is true, it does not automatically imply that the corresponding bonds are stronger. Usually, in first row elements (like C, N, O) s and p orbitals are of comparable size and also the overlaps are comparable, with the s-p overlap being slightly larger.
In contrast, in higher row elements (e. g. S, P, Si, Ge) the p orbitals are much more diffuse than the s orbitals. Hence s-p overlap is much reduced. That is also the main reason why elements of the higher rows do not form sp hybrid orbitals.
 
  • #14
if we consider two pairs of hydrogen atoms. one pair of hydrogen atoms bond with overlap of their s-orbitals. The other pair bonds with the overlap of a s and a p orbital(I know its not possible, just assuming). Both bonds are formed through the process mentioned http://www.chemistry.mcmaster.ca/esam/Chapter_6/section_1.html" [Broken]. Now which bond will be stronger? Is it the s-p overlap bond; due to the presence of a p-orbital allowing part of the charge density to get closer to each nuclei; compared to the s-s overlap? Thanks for the help Dr.Du
 
Last edited by a moderator:
  • #15
tasnim rahman said:
if we consider two pairs of hydrogen atoms. one pair of hydrogen atoms bond with overlap of their s-orbitals. The other pair bonds with the overlap of a s and a p orbital(I know its not possible, just assuming). Both bonds are formed through the process mentioned http://www.chemistry.mcmaster.ca/esam/Chapter_6/section_1.html" [Broken]. Now which bond will be stronger? Is it the s-p overlap bond; due to the presence of a p-orbital allowing part of the charge density to get closer to each nuclei; compared to the s-s overlap? Thanks for the help Dr.Du

As I tried to explain, this depends among other things on the size of the (hypothetical) p orbital as compared to the size of the s-orbital. You can easily see that the overlap of an s and a p orbital will go to 0 when the p orbital becomes bigger and bigger. On the other hand, the strength of the bond does not only depend on the overlap but also on the energy of the orbital.
So it would be better to restrict your argumentation to some reasonable class or real existing bonds e.g. C-C or C-H bonds or the like.
 
Last edited by a moderator:

1. Why is the s-p orbital overlap stronger than the s-s overlap?

The s and p orbitals have different shapes and orientations, which allows them to overlap more efficiently. The p orbital is oriented perpendicular to the s orbital, resulting in a greater overlap and stronger bond formation.

2. How does the difference in orbital shape affect the overlap strength?

The s orbital is spherical in shape, while the p orbital is dumbbell-shaped. This asymmetry allows for a more effective overlap, as the lobes of the p orbital can come into closer contact with the s orbital, resulting in a stronger bond.

3. Can you provide an example of a molecule where s-p overlap is stronger than s-s overlap?

One example is the molecule CH4 (methane). The carbon atom has an s orbital and three p orbitals, which overlap with the s orbital of each of the four hydrogen atoms. This results in stronger s-p overlap than s-s overlap.

4. Why is s-p overlap more favorable in certain situations?

In molecules with multiple bonds, such as double or triple bonds, s-p overlap is necessary for the formation of these bonds. The overlap of p orbitals allows for the sharing of electrons between atoms, resulting in a stronger bond than s-s overlap.

5. How does the strength of s-p overlap compare to other types of overlap?

In general, s-p overlap is stronger than s-s overlap, but not as strong as p-p overlap. This is because p orbitals have the ability to overlap in multiple directions, resulting in a more efficient and stronger bond formation.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Chemistry
Replies
9
Views
3K
Replies
8
Views
928
  • Biology and Chemistry Homework Help
Replies
5
Views
5K
  • Chemistry
Replies
7
Views
4K
  • Biology and Chemistry Homework Help
Replies
7
Views
1K
  • Chemistry
Replies
7
Views
5K
Replies
3
Views
905
Back
Top