New solving cubic and quartic equations

  • Thread starter sdio
  • Start date
  • Tags
    Cubic
In summary, this conversation discusses solving cubic and quartic equations using various formulas and equations.
  • #1
sdio
1
0
Cubic equation [tex]f=a x+b x^2+c x^3[/tex]

Solving:

[tex]A=\frac{-(a b+9 c f)+\sqrt{(a b+9 c f)^2-4 \left(b^2-3 a c\right) \left(a^2+3 b f\right)}}{2 \left(b^2-3 a c\right)}[/tex]
[tex]G=a+2 b A+3 c A^2[/tex]
[tex]H=a A+b A^2+c A^3-f[/tex]
[tex]F=G^3-27cH^2[/tex]
[tex]B=\left\{F^{1/3}\,,-(-1)^{1/3} F^{1/3}\,,(-1)^{2/3}F^{1/3}\right\}[/tex]
[tex]x=A+\frac{3H}{B-G}[/tex]

TeX code for check in your CAS:
Code:
f=a x+b x^2+c x^3\\\\A=\frac{-(a b+9 c f)+\sqrt{(a b+9 c f)^2-4 \left(b^2-3 a c\right) \left(a^2+3 b f\right)}}{2 \left(b^2-3 a c\right)}\\G=a+2 b A+3 c A^2\\H=a A+b A^2+c A^3-f\\F=G^3-27cH^2\\B=\left\{F^{1/3}\,,-(-1)^{1/3} F^{1/3}\,,(-1)^{2/3}F^{1/3}\right\}\\x=A+\frac{3H}{B-G}


Quartic equation [tex]t=p y+q y^2+r y^3+s y^4[/tex]

Solving:

[tex]m=3r^2-8 q s[/tex]
[tex]n=r^3-16 p s^2[/tex]
[tex]c=(r m-n)/2[/tex]
[tex]b=3c r+q s\left(r^2-m\right)-4s^2(p r-8s t)[/tex]
[tex]a=b r-2 c q s[/tex]
[tex]f=-c r\left(r^2-2 q s\right)-8 s^3\left(p^2 s+r^2t\right)[/tex]
[tex]A=\frac{-(a b+9 c f)\pm\sqrt{(a b+9 c f)^2-4 \left(b^2-3 a c\right) \left(a^2+3 b f\right)}}{2 \left(b^2-3 a c\right)}[/tex]
[tex]G=a+2b A+3 c A^2[/tex]
[tex]H=a A+b A^2+c A^3-f[/tex]
[tex]F=G^3-27c H^2[/tex]
[tex]B=F^{1/3}[/tex]
[tex]X=A+\frac{3H}{B-G}[/tex]
[tex]u=-4 s^2\left(q^2-2 p r +4 s t\right)-(3 c+m X)(r+X)[/tex]
[tex]V_0=c r\left(q s\left(r^2+m\right)-r \left(m r+8p s^2\right)\right)+16 s^3 \left(q^4 s-2 r^4 t-4 p q s (q r-2 p s)+8 s^2 t \left(q^2+2 s t\right)\right)[/tex]
[tex]V_1=c m r^2-2 q s \left(r^5-q s(c+m r)\right)+4 s^2 \left(q^2 r^3+p r \left(r^3+4 p s^2\right)+8 s t\left(2 r^3-3 q r s+2 p s^2\right)\right)[/tex]
[tex]V_2=-3 c m r-4 s^2 \left(m \left(q^2+2 p r+4 s t\right)+4 r \left(-q^2 r+8 p q s+12 r s t\right)\right)[/tex]
[tex]V_3=-c(m+4 q s)+2r s\left( q r^2-10 p r s-64 s^2t\right)[/tex]
[tex]V_4=-3c r+4s\left( q r^2-10 p r s-64 s^2t\right)[/tex]
[tex]v=V_0-4V_1 X+2V_2 X^2+4V_3 X^3+V_4 X^4[/tex]
[tex]w=\pm\sqrt{-u\pm\sqrt{u^2-v}}[/tex]
[tex]z=w-2 q s+r^2+r X+X^2[/tex]
[tex]y=\frac{X\pm\sqrt{z}}{2s}[/tex]

TeX code:
Code:
t=p y+q y^2+r y^3+s y^4\\\\m=3r^2-8 q s\\n=r^3-16 p s^2\\c=(r m-n)/2\\b=3c r+q s\left(r^2-m\right)-4s^2(p r-8s t)\\a=b r-2 c q s\\f=-c r\left(r^2-2 q s\right)-8 s^3\left(p^2 s+r^2t\right)\\A=\frac{-(a b+9 c f)\pm\sqrt{(a b+9 c f)^2-4 \left(b^2-3 a c\right) \left(a^2+3 b f\right)}}{2 \left(b^2-3 a c\right)}\\G=a+2b A+3 c A^2\\H=a A+b A^2+c A^3-f\\F=G^3-27c H^2\\B=F^{1/3}\\X=A+\frac{3H}{B-G}\\u=-4 s^2\left(q^2-2 p r +4 s t\right)-(3 c+m X)(r+X)\\V_0=c r\left(q s\left(r^2+m\right)-r \left(m r+8p s^2\right)\right)+16 s^3 \left(q^4 s-2 r^4 t-4 p q s (q r-2 p s)+8 s^2 t \left(q^2+2 s t\right)\right)\\V_1=c m r^2-2 q s \left(r^5-q s(c+m r)\right)+4 s^2 \left(q^2 r^3+p r \left(r^3+4 p s^2\right)+8 s t\left(2 r^3-3 q r s+2 p s^2\right)\right)\\V_2=-3 c m r-4 s^2 \left(m \left(q^2+2 p r+4 s t\right)+4 r \left(-q^2 r+8 p q s+12 r s t\right)\right)\\V_3=-c(m+4 q s)+2r s\left( q r^2-10 p r s-64 s^2t\right)\\V_4=-3c r+4s\left( q r^2-10 p r s-64 s^2t\right)\\v=V_0-4V_1 X+2V_2 X^2+4V_3 X^3+V_4 X^4\\w=\pm\sqrt{-u\pm\sqrt{u^2-v}}\\z=w-2 q s+r^2+r X+X^2\\y=\frac{X\pm\sqrt{z}}{2s}
 
Mathematics news on Phys.org
  • #2
Is there a question in there somewhere?
 

1. What are cubic and quartic equations?

Cubic and quartic equations are polynomial equations with degrees 3 and 4 respectively. This means that the highest power of the variable in these equations is 3 or 4. They are also known as third and fourth degree equations.

2. What is the difference between cubic and quartic equations?

The main difference between cubic and quartic equations is their degree or the highest power of the variable. Cubic equations have a degree of 3 while quartic equations have a degree of 4. This results in a difference in the number of solutions that these equations can have.

3. How can cubic and quartic equations be solved?

Cubic equations can be solved using the cubic formula or by factoring. Quartic equations can be solved using the quartic formula, by factoring, or by reducing it to a cubic equation through substitution. However, not all cubic and quartic equations have real solutions.

4. What are the applications of solving cubic and quartic equations?

Cubic and quartic equations have various applications in fields such as engineering, physics, and economics. They are used to model real-life situations and find solutions to complex problems. They are also important in understanding the behavior of functions and curves.

5. Are there any alternative methods for solving cubic and quartic equations?

Yes, there are alternative methods such as numerical methods, iterative methods, and graphing methods. These methods may be more efficient in some cases, but they may not always provide exact solutions. It is important to choose the appropriate method based on the equation and the desired level of accuracy.

Similar threads

Replies
1
Views
729
Replies
2
Views
1K
Replies
1
Views
745
Replies
4
Views
953
Replies
1
Views
9K
Replies
2
Views
10K
Replies
1
Views
9K
Replies
3
Views
213
Replies
8
Views
1K
Replies
4
Views
10K
Back
Top