Solving expected value problem with logistic function

by tlonist
Tags: expected value, logistic model, probability, solvability
tlonist is offline
Feb6-14, 10:23 AM
P: 1
I have an expected value problem where z is a desired expected value and I want to reach and x is an amount I can vary.

There is a probabilty of success based on a logistic function ρ(x) with a reward of λx and failure with a probability of (1-ρ(x)) and loss of x. I am trying to solve for the correct value of x to reach an expected value z.


[tex] z = p(x) \lambda x - (1-p(x)) x [/tex]

[tex] z = \frac{\lambda x}{1+ e^{-a-bx} } + \frac{x}{1+ e^{-a-bx} } -x[/tex]

I tried solving in Matlab but it says there is no explicit solution and I haven't been able to solve by hand.

What would be the next course of action to solve this? Is there a way to simplify?
Phys.Org News Partner Mathematics news on
Math modeling handbook now available
Hyperbolic homogeneous polynomials, oh my!
Researchers help Boston Marathon organizers plan for 2014 race

Register to reply

Related Discussions
recursive logistic map vs continuous logistic function Calculus 1
Problem with the logistic function Calculus & Beyond Homework 7
Solving the logistic growth model Introductory Physics Homework 5
Logistic Function Calculus 1
logistic function Precalculus Mathematics Homework 11