Understanding Intrinsic and Extrinsic Curvature: An Intuitive Explanation

  • Thread starter Gza
  • Start date
  • Tags
    Curvature
In summary, the conversation discussed the concepts of intrinsic and extrinsic curvature, using examples such as a cylinder and a doughnut. Intrinsic curvature is determined by the "metric" or way of measuring lengths on a surface, while extrinsic curvature is the restriction of this metric to the surface from the embedding space. The participants also discussed the definition of Gaussian curvature, which is the product of the maximum and minimum curvatures of two perpendicular curves on a surface. The conversation ended with a summary of the intuition behind intrinsic and extrinsic curvature.
  • #1
Gza
449
0
Could someone give me an intuitive example of extrinsic and intrinsic curvature. That would be much appreciated, thanks in advance.
 
Physics news on Phys.org
  • #3
Yes, that was very helpful. I had to dig up a softer book on a treatment of tensors, but it still served its purpose, thanks again.
 
  • #4
Gza said:
Yes, that was very helpful. I had to dig up a softer book on a treatment of tensors, but it still served its purpose, thanks again.

The cylinder is an excellant example of zero curvature. It is also an excellant example of a manifold for which there are infinitely many geodesics between any two points on the surface.

Pete
 
  • #5
The cylinder is an excellant example of zero curvature. It is also an excellant example of a manifold for which there are infinitely many geodesics between any two points on the surface.


Maybe I'm referring to the wrong concept, but I thought a circle had a curvature inverse of its radius, so wouldn't the curved part of the cylinder have curvature?
 
  • #6
Gza said:
Maybe I'm referring to the wrong concept, but I thought a circle had a curvature inverse of its radius, so wouldn't the curved part of the cylinder have curvature?

You're referring to a different kind of curvature. In the case of the cylinder - when someone says that the surface has zero curvature they mean that there is no "intrinsic" curvature. However it does have an "extrinsic" curvature.

Pete
 
  • #7
As I recall, again from reading Spivak some 35 years ago, Gaussian curvature of a surface at a point p, may be defined as the product of the curvature of the two (perpendicular) curves through p having respectively maximum and minimum curvature as curves. So for a cylinder, you are right that the curve of maximal curvature through the point is a circle of positive curvature, but the curve through the point with minimum curvature is a line with curvature zero, so the product, the curvature of the surface, is zero. Intuitively this is true because the cylinder can be flattened out without tearing it, so really it is not curved as a surface.


I do not know what intrinsic and extrinsic curvature mean but i can guess. Curvatiure is determined by a way of emasuring lengths i.e. a "metric". If a surface like a doughnut for instance is embedded in three space then there are many ways to define a length on it. There is the "extrinsic length" which is just the restriction to the doughnut of the notion of euclidean length. The associated curvatuire would be the extrinsic curvature. E.g. it was extrinsic curvature we were discussing above for the cylinder.

But it seems intuitively clear to me that we could define length differently, in a such a way that the length on (the surface of) a doughnut agreed with the extrinsic length on a cylinder and then the curvature of a doughnut surface would be zero.

So really all curvature is intrinsic, since it is determined by the metric, but you may call the metric and the associated curvature extrinsic if ity happens to agree with that of the embedding space. This is just a plausible guess, but not an uninformed one.
 

What is extrinsic curvature?

Extrinsic curvature refers to the curvature of a surface in three-dimensional space. It is a measure of how a surface is curved in relation to its embedding in a higher-dimensional space.

What is intrinsic curvature?

Intrinsic curvature refers to the curvature of a surface as it exists within its own two-dimensional space. It is a measure of how the surface is curved without considering its embedding in a higher-dimensional space.

What is the difference between extrinsic and intrinsic curvature?

The main difference between extrinsic and intrinsic curvature is that extrinsic curvature takes into account the surface's embedding in a higher-dimensional space, while intrinsic curvature only considers the curvature of the surface itself.

How is extrinsic curvature measured?

Extrinsic curvature is typically measured using differential geometry, specifically using the Gauss-Codazzi equations. This involves calculating the first and second fundamental forms of the surface, which describe the surface's local geometry.

What is the significance of extrinsic and intrinsic curvature?

Extrinsic and intrinsic curvature are important concepts in mathematics, physics, and engineering. They have applications in fields such as differential geometry, general relativity, and computer graphics. Understanding these concepts allows scientists to better understand the shape and behavior of surfaces in different dimensions.

Similar threads

  • Differential Geometry
Replies
2
Views
2K
  • Differential Geometry
Replies
5
Views
1K
Replies
4
Views
3K
  • Differential Geometry
Replies
3
Views
2K
  • Special and General Relativity
Replies
6
Views
1K
  • Differential Geometry
Replies
8
Views
4K
  • Special and General Relativity
Replies
14
Views
2K
  • Differential Geometry
Replies
5
Views
3K
Replies
1
Views
2K
  • Differential Geometry
Replies
16
Views
2K
Back
Top