Black Hole Time Machine (time dilation)

In summary: Theoretical physicist and string theorist Dr. Michio Kaku has proposed that a black hole could be used as a time machine, by entering into its gravitational field and then escaping back to the outside world. The black hole would act as a space-time portal, allowing travel into the future or past."In summary, a black hole could be used as a time machine, but it would only be possible if the black hole was located far away from the center of the galaxy.
  • #1
sciroccokid
27
0
All,

I am familiar with the concept of orbiting a black hole without entering its event horizon as a means of time travel. Does anyone have any research on this matter, or know of any papers which deal with this concept.

I would really like to explain this concept to a colleague and additional materials would be very helpful! Thanks
 
Physics news on Phys.org
  • #2
I can't find anything on this. Maybe I don't know how to use google. . . Anyone have any resources regarding time travel via orbiting a black hole?
 
  • #3
You need a super extreme Black Hole in order to do what you want.
We don't know if such BH exist
In the ordinary BH the area with closed timelike loops is hidden INSIDE the horizon => is useless for timetravel in our Universe
 
  • #4
Judging from the OP's post, I don't think he was referring to closed timelike curves. I think he meant simply using the gravitational potential of a black hole to "travel into the future".

OP: If this is the case, what do you want to know? Do you want to know why this type of effect occurs, or how to calculate it, or what?
 
  • #5
No, this would happen as a result of gravitational time dilation. Correct? Hypothetically, there is a black hole not to far away (i.e. not the center of the galaxy) I get in my rocket ship and fly to the black hole. I enter into orbit with just the right amount of velocity that i don't get pulled in or shot out. I orbit the black hole a few times. My time in orbit would go slower due to gravitational time dilation. I turn on the ol rocket boosters, break free from orbit, come home, and less time has elapsed for me, then on earth.

Dmitry67 said:
You need a super extreme Black Hole in order to do what you want.
We don't know if such BH exist
In the ordinary BH the area with closed timelike loops is hidden INSIDE the horizon => is useless for timetravel in our Universe
 
  • #6
That's precisely the effect I mentioned.

The closed timelike curves mentioned by dmitry would hypothetically allow a traveler to travel into the past, though. Most physicists think these curves are simply artifacts of theories though, rather than objects that actually exist...
 
  • #7
I would like to explain this to a colleague and provide him some materials which he can refer to, other then this forum, haha. I was curious if anyone had written popular articles, or research papers on this.

Nabeshin said:
Judging from the OP's post, I don't think he was referring to closed timelike curves. I think he meant simply using the gravitational potential of a black hole to "travel into the future".

OP: If this is the case, what do you want to know? Do you want to know why this type of effect occurs, or how to calculate it, or what?
 
  • #8
So are there any articles which talk about using the orbit of a lack hole as a time machine?
 
  • #9
sciroccokid said:
Hypothetically, there is a black hole not to far away (i.e. not the center of the galaxy) I get in my rocket ship and fly to the black hole. I enter into orbit with just the right amount of velocity that i don't get pulled in or shot out. I orbit the black hole a few times. My time in orbit would go slower due to gravitational time dilation. I turn on the ol rocket boosters, break free from orbit, come home, and less time has elapsed for me, then on earth.

I have little knowledge of gravitational time dilation, but, if gravitation had such a dilatory effect wouldn't it be the same if the body orbited was a black hole or not. With no gravtational effects wouldn't you still age less than someone who remained on Earth even if you just traveled to where you were going and then returned to earth.

Matheinste.
 
  • #10
Well that would be time dilation due to velocity from traveling, presuming your were traveling at greatly accelerated rate.
 
  • #11
This effect occurs whether you orbit a black hole or not. For example, you could pilot your spaceship close to the event horizon and hover there for a while. This would a dilation effect, even though there might not be any motion between observers. This is actually separate from the velocity effect!

Sciroccokid: I don't know of any research papers which discuss this (my knowledge of papers is limited in general), but I don't think many would. The primary reason is that this isn't an incredibly complicated topic. It's not the kind of thing people do research on, seeing as it's solvable with a 1st year introduction to General Relativity, and probably available as an exercise or example in any textbook.

I did a quick search and couldn't find anything from a popular publication from google, but did find this, which explains the subject (perhaps in more detail than you're interested):
http://home.earthlink.net/~rrs0/Schwarzschild/Schwarzschild.pdf
 
  • #12
Agreed. Thanks.

Nabeshin said:
This effect occurs whether you orbit a black hole or not. For example, you could pilot your spaceship close to the event horizon and hover there for a while. This would a dilation effect, even though there might not be any motion between observers. This is actually separate from the velocity effect!

Sciroccokid: I don't know of any research papers which discuss this (my knowledge of papers is limited in general), but I don't think many would. The primary reason is that this isn't an incredibly complicated topic. It's not the kind of thing people do research on, seeing as it's solvable with a 1st year introduction to General Relativity, and probably available as an exercise or example in any textbook.

I did a quick search and couldn't find anything from a popular publication from google, but did find this, which explains the subject (perhaps in more detail than you're interested):
http://home.earthlink.net/~rrs0/Schwarzschild/Schwarzschild.pdf
 
  • #13
I'm not quite sure what your question is, but "Black holes and time warps: Einstein's outrageous legacy" by Kip Thorne is a good popular book about black holes, wormholes, and time travel, and has a description of orbiting a black hole.
 
  • #14
The following is an approximation of the time dilation for an object in stable orbit around a static black hole.

In order to maintain a stable orbit-

[tex]a_c=a_g[/tex]

where ac is centripetal acceleration of the orbiting object (m2) and ag is gravitational acceleration of the main body (m1), both in units of m/s2

For centripetal acceleration-

[tex]a_c=\frac{v_t^2\ m_2}{r}[/tex]

where vt is the tangential velocity of the orbiting object and r is the radius of orbit

For gravitational acceleration (in GR)-

[tex]a_g=\frac{Gm_1m_2}{r^2 }\frac{1}{\sqrt{g_{tt}}}[/tex]

where [itex]g_{tt}=1-2M/r[/itex] and [itex]M=Gm_1/c^2[/itex]

if ac=ag then-

[tex]\frac{v_t^2\ m_2}{r}=\frac{Gm_1m_2}{r^2}\frac{1}{\sqrt{g_{tt}}}[/tex]

solve for vt for a stable orbit-

[tex]v_t=\sqrt{\frac{Gm_1}{r\sqrt{g_{tt}}}[/tex]Total time dilation of orbiting object

time dilation due to gravity-

[tex]t'_g=t\sqrt{g_{tt}}[/tex]

time dilation due to velocity-

[tex]t'_v=t\sqrt{1-\frac{v^2}{c^2}}[/tex]

According to a number of sources on the forum, in order to obtain the total time dilation (t'T), the consequence of time dilation due to gravity and velocity should be multiplied so-

[tex]t'_T=t'_g \cdot t'_v[/tex]

substituting the equation for vt into t'v-

[tex]t'_v=t\sqrt{1-\frac{Gm_1}{r\sqrt{g_{tt}}\ c^2}[/tex]

substitute [itex]M=Gm_1/c^2[/itex] and solve for t'T, the total time dilation for an object in stable orbit around a static black hole is-

[tex]t'_T=t\sqrt{g_{tt}} \cdot \sqrt{1-\frac{M}{r\sqrt{g_{tt}}}[/tex]So the time dilation of an object with a stable orbit at 6M around a SM BH with a mass of 3.7e+6 sol would be t'T= 0.7284 and the tangental velocity would be vt=0.4518c
 
Last edited:

1. What is a black hole time machine?

A black hole time machine is a hypothetical concept that suggests that time travel is possible by using the extreme gravitational pull of a black hole to create a time dilation effect.

2. How does time dilation occur in a black hole time machine?

Time dilation occurs due to the intense gravitational pull of a black hole. This causes time to slow down for an outside observer, while an object falling into the black hole experiences time at a normal rate.

3. Can a black hole time machine be built?

At this time, building a black hole time machine is only a theoretical concept and there is no current technology that could create or sustain a black hole large enough to create a significant time dilation effect.

4. Is it possible to travel back in time using a black hole time machine?

According to Einstein's theory of relativity, time travel into the past is not possible. While a black hole time machine may cause a time dilation effect, it would not allow for traveling back in time.

5. Are there any risks associated with using a black hole time machine?

There are many risks associated with a black hole time machine, including the potential for getting trapped inside the black hole and being unable to escape, as well as the potential for severe physical and gravitational effects on the human body.

Similar threads

Replies
35
Views
1K
  • Special and General Relativity
Replies
11
Views
639
  • Special and General Relativity
Replies
16
Views
1K
  • Special and General Relativity
2
Replies
36
Views
2K
  • Special and General Relativity
Replies
2
Views
760
  • Special and General Relativity
2
Replies
35
Views
782
  • Special and General Relativity
2
Replies
57
Views
1K
  • Special and General Relativity
Replies
11
Views
2K
  • Special and General Relativity
Replies
4
Views
1K
  • Special and General Relativity
Replies
6
Views
1K
Back
Top