## Surface integral - I don't understand it

Hello,

So I am trying to understand surface integrals so I can can more insight to understand Gauss's Law.

I am reading a book about it, and the example that is used to explain a surface integral is to have a flat surface that has a mass density that changes as a function of position in the x & y position σ(x,y)

The author then goes on to say that to find the total mass of the surface, take the area density and multiply by the area, and to make a summation of small areas.

The author says ''the smaller you make the area segments, the closer this gets to the true mass, since your approximation of constant σ is more accurate for smaller segments.

I don't understand this statement, if the area density changes with x & y, how can I say that the area in some corner that is very dense is approximately equal to another corner that is much less dense.
 PhysOrg.com science news on PhysOrg.com >> City-life changes blackbird personalities, study shows>> Origins of 'The Hoff' crab revealed (w/ Video)>> Older males make better fathers: Mature male beetles work harder, care less about female infidelity
 Blog Entries: 1 Recognitions: Gold Member Homework Help When you multiply the density by a small area, you take the density to be constant over that area, i.e. take σ = σ(x, y) for some particular (x, y) in that area. This will be close to the actual mass because of the fact that σ is continuous, i.e. by choosing sufficiently small area the difference between σ at two points in that area can be made arbitrarily small.

Recognitions:
Gold Member
Staff Emeritus
 Quote by Woopydalan Hello, So I am trying to understand surface integrals so I can can more insight to understand Gauss's Law. I am reading a book about it, and the example that is used to explain a surface integral is to have a flat surface that has a mass density that changes as a function of position in the x & y position σ(x,y) The author then goes on to say that to find the total mass of the surface, take the area density and multiply by the area, and to make a summation of small areas. The author says ''the smaller you make the area segments, the closer this gets to the true mass, since your approximation of constant σ is more accurate for smaller segments. I don't understand this statement, if the area density changes with x & y, how can I say that the area in some corner that is very dense is approximately equal to another corner that is much less dense.
The statement you quote doesn't mean "that the area in some corner that is very dense is approximately equal to another corner that is much less dense"
It is saying that the sum of masses of such small regions is approximately the total mass. (And it is talking about mass not area.)

## Surface integral - I don't understand it

why is it that if you make smaller segments, the area density approaches a constant? If it becomes constant over the entire surface, then you would be saying that the less dense regions, if made appropriately small enough, are about the same as the more dense regions, if the segments are made small enough?

I'm still not convinced, help!!

Recognitions:
Gold Member