1. The problem statement, all variables and given/known data

For question 20.16 (a) in this link:

http://people.ischool.berkeley.edu/~...04hw7sum06.pdf

I don't understand the last sentence in the solution. How/why does the limit comparison test for sequences tell us that result?

2. Relevant equations

3. The attempt at a solution

 PhysOrg.com science news on PhysOrg.com >> Front-row seats to climate change>> Attacking MRSA with metals from antibacterial clays>> New formula invented for microscope viewing, substitutes for federally controlled drug

Recognitions:
Homework Help
 Quote by Artusartos 1. The problem statement, all variables and given/known data For question 20.16 (a) in this link: http://people.ischool.berkeley.edu/~...04hw7sum06.pdf I don't understand the last sentence in the solution. How/why does the limit comparison test for sequences tell us that result? Thanks in advance 2. Relevant equations 3. The attempt at a solution
Can you have ##f_1(x_n) \leq f_2(x_n) \; \forall n## but ##\lim_{n \to \infty} f_1(x_n) > \lim_{n \to \infty} f_2(x_n)?##

 Quote by Ray Vickson Can you have ##f_1(x_n) \leq f_2(x_n) \; \forall n## but ##\lim_{n \to \infty} f_1(x_n) > \lim_{n \to \infty} f_2(x_n)?##
No but isn't that what we are trying to prove?

Of course, when I think about it, it makes sense. But I can't see any theorem like that in my textbook...

Isn't the limit comparison test related not just to sequences, but specifically to infinite series? Since we're already told that both $f_1$ and $f_2$ converge to finite values as x->a+, why is it helpful that the LCT should tell us they both converge together?

In the proof provided in the OP's link, I follow most of the author's reasoning. I just don't see how LCT comes into it at all.

If this is not rigorous enough, someone please critique, but I am tempted to just leave it at the following:

Let $\langle x_n \rangle$ be a sequence of elements in (a,b) converging to a.

We know:
$f_1(x_n) \leq f_2(x_n)$, for all n

$\lim_{n \to \infty} f_1(x_n) \leq \lim_{n \to \infty} f_2(x_n)$

which, by hypothesis, implies:
$L_1 \leq L_2$

-------------------------------------------------

Is this also a satisfactory proof?

Recognitions:
Homework Help
 Quote by Artusartos No but isn't that what we are trying to prove? Of course, when I think about it, it makes sense. But I can't see any theorem like that in my textbook...
It is probably regarded as obvious; in any case its proof is just about as simple as you can get; just assume the result is false and see what happens.