intersection of straight line with (lagrange) polynomial

by bigfooted
Tags: intersection, polynomial, straight line, vector analysis
bigfooted is offline
Dec24-13, 05:43 AM
P: 263

To calculate the intersection of two straight lines the cross product of the line vectors can be used, i.e. when the lines start in points p and q, and have direction vectors r and s, then if the cross product r x s is nonzero, the intersection point is q+us, and can be found from
[itex]p+t\cdot r = q+u\cdot s[/itex].
[itex]t=\frac{(q-p)\times s}{r \times s}[/itex]

I was wondering how to derive such a relationship for the intersection between a straight line and a second order polynomial.

Specifically, I'm interested in second order Lagrange (and 3rd order Hermite) polynomials:



[itex]\Psi_i=\prod_{M=1,M ≠ N}^{n}\frac{\xi-\xi_M}{\xi_N-\xi_M}[/itex]

where [itex]\xi=0..1[/itex] and [itex]x_1[/itex] is the starting point, [itex]x_2[/itex] the midpoint and [itex]x_3[/itex] the endpoint

My guess is that standard techniques to find the intersection first transform the second order polynomial to the unit plane where the polynomial reduces to a line, then find the intersection and then transform back, but a (quick) search didn't give me anything.
Phys.Org News Partner Mathematics news on
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
Pseudo-mathematics and financial charlatanism

Register to reply

Related Discussions
Linear Algebra- Finding the intersection of two straight lines. Calculus & Beyond Homework 1
Lagrange Polynomial Interpolation Calculus & Beyond Homework 5
Ray-Polynomial Intersection General Math 0
Lagrange Multipler and Max/Min point of intersection Calculus & Beyond Homework 5
could a vector be also a curved line not only a straight line? General Math 3