Register to reply

Parabolic Coordinates Radius

by bolbteppa
Tags: coordinates, parabolic, radius
Share this thread:
bolbteppa
#1
Apr18-14, 04:22 AM
P: 156
Given Cartesian [itex](x,y,z)[/itex], Spherical [itex](r,\theta,\phi)[/itex] and parabolic [itex](\varepsilon , \eta , \phi )[/itex], where

[tex]\varepsilon = r + z = r(1 + \cos(\theta)) \\\eta = r - z = r(1 - \cos( \theta ) ) \\ \phi = \phi [/tex]

why is it obvious, looking at the pictures





(Is my picture right or is it backwards/upside-down?)

that [itex]x[/itex] and [itex]y[/itex] contain a term of the form [itex]\sqrt{ \varepsilon \eta }[/itex] as the radius in

[tex]x = \sqrt{ \varepsilon \eta } \cos (\phi) \\ y = \sqrt{ \varepsilon \eta } \sin (\phi) \\ z = \frac{\varepsilon \ - \eta}{2}[/tex]

I know that [itex] \varepsilon \eta = r^2 - r^2 \cos^2(\phi) = r^2 \sin^2(\phi) = \rho^2[/itex] ([itex]\rho[/itex] the diagonal in the x-y plane) implies [itex] x = \rho \cos(\phi) = \sqrt{ \varepsilon \eta } \cos (\phi) [/itex] mathematically, but looking at the picture I have no physical or geometrical intuition as to why [itex] \rho = \sqrt{ \varepsilon \eta } [/itex].
Phys.Org News Partner Mathematics news on Phys.org
Heat distributions help researchers to understand curved space
Professor quantifies how 'one thing leads to another'
Team announces construction of a formal computer-verified proof of the Kepler conjecture

Register to reply

Related Discussions
Kinetic energy in parabolic coordinates Introductory Physics Homework 3
Parabolic coordinates Differential Geometry 4
Parabolic Coordinates Advanced Physics Homework 1
Inverting parabolic and stereographic coordinates Precalculus Mathematics Homework 1
Parabolic cylindrical coordinates Calculus & Beyond Homework 3