Understanding Berylium and Lithium Ionisation Energy: Confusion Cleared

  • Thread starter Bladibla
  • Start date
  • Tags
    Lithium
In summary, The Bob said that berylium has a higher ionisation energy than lithium because of the increase in nuclear charge (from lithium) and that the repelling effect between the electrons is relatively negligible compared to the increased number of...whatever they are.
  • #1
Bladibla
358
1
Hello all

I was asked a question on the first ionisation energy of Lithium and berylium, and it confused me.

It seemed obvious to other people in the class that Berylium has a higher ionisation energy than Lithium (which according to my chemistry teacher is the right answer)

Now This baffled me. Lithium has 2 electrons in its 1S shell and a single electron in its 2S shell, while Berylium has 2 electrons in its 1S shell and 2 electrons in its 2S shell.

If looking at the repelling property or electrons (to each other, that is) shouldn't Berylium have a lower ionisation energy than Lithium?
My chemistry teacher said that because of the increase in nuclear charge (from lithium) Berylium will have a higher ionisation energy, but we must also consider the increase in the number of electrons from lithium to berylium.

In berylium, not only will the 2S electrons repell each other, but they wil lsti.ll have repulsion from the 1S shell as well!

Please forgive me if this was a dumb question (i.e. i just forgot a bit of detail)
 
Chemistry news on Phys.org
  • #2
Well, electrons are not really 'repelled' by others in orbit in the classical sense. The big effect of the 1S shell is not its charge repulsion, but its effect of shielding the additional electrons from the effect of nuclear attraction. The 2S electron has little effect, especially when compared to the new proton, which boosts nuclear charge by a third.
 
  • #3
Could it be good to explain it like this?

As Beryllium have 2 electrons in its 2nd shell, there needs to be more energy to remove one electron as both are as close to the nucleus as each other. One electron will be attracted so much but 2 electrons will be attracted more and so more energy is needed to ionise Beryllium than Lithium.

I hope that is the way to see it but if it isn't, please correct me as well.

The Bob (2004 ©)
 
  • #4
..

Thanks for the replies. FZ+ and Bob.

I've considered both of your replies, and has been explained to me...to a extent.

FZ+, when you mean not repelled in the classical sense, do you mean the way Magnets are repelled when the same polls approach each other?
If this is so, it does make a huge difference to me, as i have always thought of electrons that way.

The Bob '2 electons attracted more..' bit was a bit confusing to me. If i look at the electrons in a bar magnet sense, the electrons in the same orbital would repell each other. However, as i said before, if this ISN'T the case (i.e. it isn't the bar magnet) then it does make sense to me.

So is it plausible for me to presume that the increase in the number of protons (i.e. 1+ for berylium in respect to lithium) increases the nuclear charge to a extent that the shielding from the electrons becomes redundant?
 
  • #5
Bladibla said:
The Bob '2 electons attracted more..' bit was a bit confusing to me. If i look at the electrons in a bar magnet sense, the electrons in the same orbital would repell each other. However, as i said before, if this ISN'T the case (i.e. it isn't the bar magnet) then it does make sense to me.
I mean that the 2 electrons are attracted stronger to the nucleus than one electron. However I am unsure that I am right because that doesn't make sense to me either.

Having said that. Lithium has a Relative Atomic Mass Number of 7 and an Atomic Number of 3. Beryllium has a Relative Atomic Mass Number of 9 and an Atomic Number of 4. Therefore the nucleus is bigger and so attracts the electrons more.

The Bob (2004 ©)
 
  • #7
Be has one more proton and electron than Li has. The added proton attracts all the electrons, making its atomic radius smaller, therefore more energy is required to remove an electron from the Be. It's that simple.
 
  • #8
Cantari said:
Be has one more proton and electron than Li has. The added proton attracts all the electrons, making its atomic radius smaller, therefore more energy is required to remove an electron from the Be. It's that simple.
You see I thought that but I have been told off before for suggesting the simple. I got that idea from http://www.colorado.edu/physics/2000/applets/a2.html because as you increase the number of protons the electrons in the table get lower, even in the same shell.

The Bob (2004 ©)
 
Last edited by a moderator:
  • #9
Well I think for this case it is that simple, yes it can get more difficult with different scenarios, but in this case that explanation is just fine.
 
  • #10
..

So i can say that the repelling effect between the electrons is relatively negligible compared to the increased number of protons?
 
  • #11
Bladibla: "If looking at the repelling property or electrons (to each other, that is) shouldn't Berylium have a lower ionisation energy than Lithium?"

Bladibla, its quite simple.

Li has a charge 3p+ and 1 Valence electron. It very much so would like to give away its outer electron and become a stable atom with a full outer shell, in this case 1s. Li is very reactive becase it has such a low ionization energy. Be has a nuclear charge of 4p+ and 2 valence electrons. It is as well very reative, but a bit less than Li because it has a higher ionization energy. In other words think of it this way: You would need more energy to pull out 2 electrons than 1. A higher ionization energy.

The Bob: "I mean that the 2 electrons are attracted stronger to the nucleus than one electron. However I am unsure that I am right because that doesn't make sense to me either."

It all cancels out, that's the beauty of the Periodic table. There is no stable atom with different number of protons and electrons. Li has 3 protons and holds 3 electrons in it's shells, Be has 4 protons and hold 4 electrons in it's shells. Its all proportional. The reason why 2 electrons are attracted to a stronger nucleus is because protons have a larger mass than electrons a have an effect on its attraction. Li and Be are both very reactive, Li is just a bit more reactive because its has a lower nuclear charge and 1 valence electron to remove instead of 2. Be is still reactive, but it requires a higher energy to remove 2 electrons from its slightly higher nuclear charge. Therfore, once again it has a higher ionization energy.
 
  • #12
DB said:
It all cancels out, that's the beauty of the Periodic table. There is no stable atom with different number of protons and electrons. Li has 3 protons and holds 3 electrons in it's shells, Be has 4 protons and hold 4 electrons in it's shells. Its all proportional. The reason why 2 electrons are attracted to a stronger nucleus is because protons have a larger mass than electrons a have an effect on its attraction. Li and Be are both very reactive, Li is just a bit more reactive because its has a lower nuclear charge and 1 valence electron to remove instead of 2. Be is still reactive, but it requires a higher energy to remove 2 electrons from its slightly higher nuclear charge. Therfore, once again it has a higher ionization energy.
This is the reason I hate explanation. I can think of what I want to say and I am unable to say it. I was talking about the size of the nucleus but clearly it is the mass that matters in this case.

Thanks DB. :biggrin:

The Bob (2004 ©)
 
  • #13
Li has a charge 3p+ and 1 Valence electron. It very much so would like to give away its outer electron and become a stable atom with a full outer shell, in this case 1s.

An atom never wants to "give" an electron away, energy is always required to remove that electron.
 
  • #14
DB said:
Bladibla: "If looking at the repelling property or electrons (to each other, that is) shouldn't Berylium have a lower ionisation energy than Lithium?"

Bladibla, its quite simple.

Li has a charge 3p+ and 1 Valence electron. It very much so would like to give away its outer electron and become a stable atom with a full outer shell, in this case 1s. Li is very reactive becase it has such a low ionization energy. Be has a nuclear charge of 4p+ and 2 valence electrons. It is as well very reative, but a bit less than Li because it has a higher ionization energy. In other words think of it this way: You would need more energy to pull out 2 electrons than 1. A higher ionization energy.

The Bob: "I mean that the 2 electrons are attracted stronger to the nucleus than one electron. However I am unsure that I am right because that doesn't make sense to me either."

It all cancels out, that's the beauty of the Periodic table. There is no stable atom with different number of protons and electrons. Li has 3 protons and holds 3 electrons in it's shells, Be has 4 protons and hold 4 electrons in it's shells. Its all proportional. The reason why 2 electrons are attracted to a stronger nucleus is because protons have a larger mass than electrons a have an effect on its attraction. Li and Be are both very reactive, Li is just a bit more reactive because its has a lower nuclear charge and 1 valence electron to remove instead of 2. Be is still reactive, but it requires a higher energy to remove 2 electrons from its slightly higher nuclear charge. Therfore, once again it has a higher ionization energy.


I might be wrong here, but i think you are begging the question. (And i do apologize if this wasn't the case, and i have mistaken)

''Li has a charge 3p+ and 1 Valence electron. It very much so would like to give away its outer electron and become a stable atom with a full outer shell, in this case 1s. Li is very reactive becase it has such a low ionization energy.''

Now compare this with Berylium. I think you are talking as if the atom was actually alive to give away electrons to become more stable. But the point is, it cannot ignore the repelling properties of the electrons.

We can see that the shielding from the 1S electrons, the single 2S electron is easier to lose ( in respect to helium)
However, it can also be said for berylium, the increase in the number of electrons (+1 from lithium) has more repelling effect and therefore easier to lose a electron (i.e. first ionisation energy) than lithium.

The only 'proper' explanation for this, in my opinion, is that the increase in the number of protons (+1) has increased the nuclear charge to a extent that the shielding and repelling from the electrons in the 1S and 2S shells is not a singificant amount to counteract. (again i apologize if this isn't the case)
 
  • #15
well, i just got a bit more...complicated answer from the trusty scientists.

Should i post it?
 
  • #16
Cantari:"An atom never wants to "give" an electron away, energy is always required to remove that electron."

Ya. Absolutely. But we never find Li in nature alone, always in a molecular form. When I said "give" it away, I meant that it's ionization energy is so low compared to atoms to the right of it, that with a slight amount of energy (heat) its will pretty much "give away" it's valence electron (with another atom to bond with of course).

Bladibla:Should i post it?

Ya sure. I'm not an expert on quantum physics, but I'm pretty sure an eletron doesn't even "see" it's fellow electrons in an atom. They are never at a position to repel each other, they're kinetic energy (i guess i could use that term) prevents them from staying in the same place. We don't really know the path of an electron, we measure the probabilities of an electron being at a certain point, at a certain time, in it's orbital (shell). I have never heard about electron-electron repullsion within an atom, but I could be wrong.
 
  • #17
Perhaps these would be useful.

www.physics.ohio-state.edu/~lvw/handyinfo/ips.html

http://www.chemistrycoach.com/ionization_potentials_f.htm

Plotting the IPs against Z might be helpful.

The electrons arrange in pairs with opposite spin when 2 electrons occupy a subshell. This contributes to stability as manifest in higher ionization potential of the Group 2A elements.

Boron (B, Z=5) has a lower ionization energy than Be (Z=4), but carbon (C, Z=6) has a higher ionization energy than either Be or B.

Clearly ionization energies increase with Z, generally speaking, but the first P electron has a lower ionization energy than the second S electron in the first four periods, and only slightly higher ionization potential in the fifth period.

With in a group, ionization energy energies decrease as the atoms get larger. This trend reverses between periods 6 and 7 for the Group 1A and 2A elements, and between periods 5 and 6 for the transitional metals.
 
  • #18
Ok i got replies from 3 different people..:

reply 1:
The ionization energy data in electron volts are: 1H(1s) 13.598; 2He(1s2)
24.5874; 3Li(1s2,2s1) 5.3917; 4Be(1s2,2s2) 9.3227; 5B(1s2,2s2,2p1) 8.2980;
6C(1s2,2s2,2p2) 11.2603; 7N(1s2,2s2,2p3) 14.5341. The order of presentation
is the atomic number, symbol, ground state configuration, ionization energy
in E.V.
The "rules" of the correlation of the trends goes as follows:
1. There is a competition between the INCREASED attraction of the nucleus and
electrons as the atomic number increases and the DECREASED attraction due to
shielding by other electrons in a particular atom.
2. Electrons with a lower principle quantum number are more effective in shielding the outermost
valence electron than an electron with the same principle quantum number as
the outermost valence electron. For example, a '1s' electron shields a '2p'
electron than a '2s' electron shields a '2p' electron.
3. A 'ns' electron shields better than a 'np' electron because 's' electrons are "more
penetrating" than 'p' electrons. That is 's' electrons spend more time
closer to the nucleus than do 'p' electrons. Now look at the trends. Without
shielding one would expect the ionization energy of He to be twice that of
H. However it falls about 2 eV shy due to the shielding of the other '1s'
electron. Going from He to Li results in a big decrease in the ionization
energy because the valence electron is in an orbital with a principle
quantum number of '2' so on average it is more distant from the nucleus and
hence more weakly bound by coulombic attraction.
Going from Li to Be there is an increase in nuclear charge but a
simultaneous presence of the other '2s' electron. However, the "rule" is
that the '2s' electron is not very effective in shielding another '2s'
electron because they are both about the same distance from the nucleus. The
second '2s' electron almost "does not see" the other '2s' electron. In
addition, Be has a filled shell '2s2' (spins paired). That results in a
further stabilization of the atomic configuration, so the ionization energy
of Be is further increased. Moving on to B, there is an increase in nuclear
charge which "should" increase the ionization energy; however, that is more
than counter-balanced by the fact that the average distance of '2s'
electrons from the nucleus is smaller than the average distance of '2p'
electrons, so the outer valence electron "sees" less attraction of the
nucleus and the ionization energy actually decreases. For B, C, N the '2p'
valence orbitals are filling without any pairing and the '2p' electrons are
not very effective at shielding one another because that are all about the
same distance from the nucleus. As a result the ionization energies increase
"normally".
While these "rules" appear somewhat arbitrary, they are actually based
upon fairly rigorous, semi-empirical calculations that support their
validity -- called "Slater's Rules". You can find more details as well as
interactive tools that let you make comparisons between atoms at either of
these (and other) sites:
http://www.wellesley.edu/Chemistry/chem120/slater.html
http://basc.chem-eng.utoronto.ca/~paulozz/che200.htm
Be aware that the "rules" become more approximate the more electrons
that are involved. However, it is "fun" to play around with the rules to
generate "explanations" of various chemical observations.


Reply 2:

This is very perceptive of you. You are partly correct in thinking that the
ionization potential has to do with two *opposing* forces: the attraction
that comes from the protons in the nucleus - which, as the number of protons
increase should increase the first ionization energy; and the repulsion from
the electrons that is already present in the atom -which, as the number of
electrons increase should decrease the first ionization energy.

Look up a graph of ionization energy as a function of atomic number. (I
googled for it and this is the first one I could find -not the best- but you
can look for one yourself: http://www.unco.edu/chemquest/4con22aw.htm )

Now if the first ionization energy were only dependent on the number of
protons, then this chart should be linear -and have a positive slope- as a
function of atomic number (the number of protons). On the other hand, if the
first ionization energy were only dependent on the number of electrons, then
this chart would also be linear -but have a negative slope- as a function of
atomic number (the number of equivalent electrons).

The fact that the trend is not smooth, and the fact that there are peaks and
valleys to the graph, suggests that not only are the two factors (proton
attraction and electron repulsion) involved in setting the ionization
energy, but that (1) these two factors are not linear in effect, and (2)
there may be other factors involved.

Let us just stay within electromagnetic forces (not go into quantum
mechanics), and suppose that there are only these two factors (attraction by
protons and repulsion by electrons) - a look at the trend quickly makes us
realize that as we go from left to right along a row on the periodic table,
that the trend for the first ionization potential is to increase - this
should suggest that --within a row of the periodic table-- that the number
of protons is more important a factor. On the other hand, as we go from top
to bottom on any column of the periodic table (check for example the peaks
of each little trend which is headed by He, Ne, Ar, etc.) we see a decrease
in the ionization potential which suggests that as we go from level to
level, the number of electrons present (already there) is more important a
factor.

The preceding is not a complete answer. As mentioned, there may be other
factors then just electrostatic attraction and repulsion. One clue is the
sudden drop in first ionization potential as we go from He to Li, from Ne to
Na, from Ar to Kr. This transition is accompanied by the additional electron
being found in a much higher orbital (principal quantum number "n"; the
numbers you find to the left of most periodic tables and goes from 1 to 7).
Thus, the actual ionization potential is also affected by the "poorer
stability" of an electron on a higher orbital. I leave this to you for
further study.

Reply 3:

Well, ****, I looked up what has been measured.
I tend to believe in learning from the numbers.

H- 13.6eV
He- 24.6eV

Li- 5.4eV
Be- 9.3eV

Na- 5.1eV
Mg- 7.6eV

In each of these pairs, the 1-outer-electron element
has higher ionization potential than the 2-outer-electron element.

Apparently the presence of a 2nd un-charge-canceled proton in the nucleus
more than makes up for any repulsion between 2 outer electrons in the same 's' orbital.

Think of lower electron-shells as making up a hard, neutral ball
around which other electrons may dance
under the influence of unbalanced positive charges in the nucleus..
The negative electrons of the inner shells cancel out the positive charge
of an equal number of the protons in the nucleus,
leaving in these cases 1 or 2 positive charges remaining
to hold outer-shell electrons.

The 2 outer electrons do not seem to repel each other as much as
they each independently witness the increased unbalanced positive charge of the nucleus.
I cannot quite say why.
This requires enough knowledge and enough 3-D computing that you may not find your proper answer in the short term.
I think some of my college classmates had a feel for it before they graduated.
Meanwhile, all these explanations of the orbitals are approximations, hand-wavy descriptions that seem to summarize the real behavior, and shorthand rules so people can make predictions with a minimum of advanced calculation.

Likewise, the inner-shell electrons do exclude the outer electrons
from sharing their inner-shell position,
but they are not usually considered to electrostatically repel the outer electrons;
they and an equal number of protons merely have mutually canceled charges.
The exclusion is by quantum numbers, not by coulombic repulsion.
Electrons trapped in a small place develop a finite number of quantum states,
each of which can be occupied by only one electron.
You might consider this the basis of how matter occupies volume;
it certainly sets the size of an atom.

The positive protons repelling each other is not part of this issue.
Something holds them together, and nobody said the electrons had to do it.
What holds them together is called the "strong nuclear force";
it's one of the four basic forces known in physics:
(1) gravity, (2) electromagnetism, (3) strong nuclear force, (4) weak nuclear force.
Electromagnetism is responsible for orbitals and all chemical energies;
Strong Nuclear Force is responsible for nuclei and all nuclear energies,
which, as you know, are much larger than chemical energies.

The truth is, you may want to learn about electron wave-functions
and orbital quantum numbers and scientific computer use as fast as you can.
Soon you may be able to find a free-ware computer program
to help you numerically integrate in 3-D the attractions and/or repulsions
of the space-charge-densities of the electron clouds.
That way you can see for yourself how these clouds always
interpenetrate each other and yet occasionally act fairly independent.
That way you may be able to see what they mean by the term "shielding",
which seems to sometimes happen and sometimes not.
There are some orbital-shape demos on the Internet now; look at those for an earlier taste of it.


Ill try to get my head around these answers, but meanwhile... here you go.
 
Last edited by a moderator:

1. What is Beryllium and Lithium Ionisation Energy?

Beryllium and Lithium Ionisation Energy are two related concepts in chemistry that refer to the energy required to remove an electron from a neutral atom of either beryllium or lithium. This process results in the formation of a positively charged ion.

2. Why is understanding Beryllium and Lithium Ionisation Energy important?

Understanding Beryllium and Lithium Ionisation Energy is important for a variety of reasons. It can help us understand the reactivity and chemical properties of these elements, as well as their behavior in different chemical reactions. Additionally, knowledge of ionisation energy can be used to predict and explain trends in the periodic table.

3. How is Beryllium and Lithium Ionisation Energy measured?

Beryllium and Lithium Ionisation Energy are measured in units of electron volts (eV) or kilojoules per mole (kJ/mol). These units represent the energy required to remove one electron from a mole of atoms of either beryllium or lithium.

4. What factors affect Beryllium and Lithium Ionisation Energy?

The main factors that affect Beryllium and Lithium Ionisation Energy are the nuclear charge and the distance of the valence electrons from the nucleus. As the nuclear charge increases, the ionisation energy also increases. Similarly, as the distance of the valence electrons from the nucleus increases, the ionisation energy decreases.

5. How does Beryllium and Lithium Ionisation Energy differ from each other?

Beryllium and Lithium Ionisation Energy differ in terms of their values and trends in the periodic table. Beryllium has a higher ionisation energy compared to lithium due to its smaller atomic radius and higher nuclear charge. In general, ionisation energy increases from left to right across a period in the periodic table and decreases from top to bottom in a group.

Similar threads

Replies
8
Views
866
  • Chemistry
Replies
8
Views
2K
Replies
8
Views
977
  • High Energy, Nuclear, Particle Physics
Replies
1
Views
532
Replies
4
Views
1K
Replies
7
Views
3K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Back
Top