Register to reply

Parabolic Coordinates Radius

by bolbteppa
Tags: coordinates, parabolic, radius
Share this thread:
Apr18-14, 04:22 AM
P: 157
Given Cartesian [itex](x,y,z)[/itex], Spherical [itex](r,\theta,\phi)[/itex] and parabolic [itex](\varepsilon , \eta , \phi )[/itex], where

[tex]\varepsilon = r + z = r(1 + \cos(\theta)) \\\eta = r - z = r(1 - \cos( \theta ) ) \\ \phi = \phi [/tex]

why is it obvious, looking at the pictures

(Is my picture right or is it backwards/upside-down?)

that [itex]x[/itex] and [itex]y[/itex] contain a term of the form [itex]\sqrt{ \varepsilon \eta }[/itex] as the radius in

[tex]x = \sqrt{ \varepsilon \eta } \cos (\phi) \\ y = \sqrt{ \varepsilon \eta } \sin (\phi) \\ z = \frac{\varepsilon \ - \eta}{2}[/tex]

I know that [itex] \varepsilon \eta = r^2 - r^2 \cos^2(\phi) = r^2 \sin^2(\phi) = \rho^2[/itex] ([itex]\rho[/itex] the diagonal in the x-y plane) implies [itex] x = \rho \cos(\phi) = \sqrt{ \varepsilon \eta } \cos (\phi) [/itex] mathematically, but looking at the picture I have no physical or geometrical intuition as to why [itex] \rho = \sqrt{ \varepsilon \eta } [/itex].
Phys.Org News Partner Mathematics news on
Math journal puts Rauzy fractcal image on the cover
Heat distributions help researchers to understand curved space
Professor quantifies how 'one thing leads to another'

Register to reply

Related Discussions
Kinetic energy in parabolic coordinates Introductory Physics Homework 3
Parabolic coordinates Differential Geometry 4
Parabolic Coordinates Advanced Physics Homework 1
Inverting parabolic and stereographic coordinates Precalculus Mathematics Homework 1
Parabolic cylindrical coordinates Calculus & Beyond Homework 3