susskind's theoretical minimum


by 43arcsec
Tags: hamiltonian, lagrangian, minimum, susskind, theoretical
43arcsec
43arcsec is offline
#1
Jan3-14, 06:19 PM
P: 2
If anyone out there has worked through Susskind's book, I have two questions on the Lagrangian to Hamiltonian section, any help would be greatly appreciated:

1) In Lecture 8 exercise 2, he wants you to calculate take the Lagrangian of

L=1/2ω d/dt q - ω/2 q^2 as a Hamiltonian and says it equals (ω=sqrt(k/m) )

H=ω/2 ( p^2 + q^2)

From what I can tell from his book, the Lagrangian is kinetic energy - potential energy, while the Hamiltonian is kinetic energy plus the potential energy.

I've tried making this work every which way but couldn't come up with it.

Also, on the next page (158) he says the Lagrangian is (d/dt)^2 q = - ω q

This is just the equation of motion for a harmonic oscillator; how does this pass for a Lagragian that is supposed to be the K.E - P.E.?

Sorry if I'm missing something easy, but thanks for taking a look.

-Marc
Phys.Org News Partner Physics news on Phys.org
The hemihelix: Scientists discover a new shape using rubber bands (w/ video)
Mapping the road to quantum gravity
Chameleon crystals could enable active camouflage (w/ video)
maajdl
maajdl is offline
#2
Jan4-14, 03:03 PM
P: 264
First, I think L is maybe given by:

L=1/2ω (d/dt q)^2 - ω/2 q^2

From there, you can begin to calculate p = dL/d(qp) where qp = d/dt q .
Result follows immediately.
43arcsec
43arcsec is offline
#3
Jan4-14, 03:35 PM
P: 2
Canonical momentum, of course. Thanks Maajdl, I am in your debt.


Register to reply

Related Discussions
A Theoretical Minimum | Looking for Guidance Academic Guidance 4
Good follow up to The theoretical Minimum? Academic Guidance 3
Intro Physics The Theoretical Minimum by Susskind and Hrabovsky Physics & Astronomy Textbook Listings 2
The Theoretical Minimum, Released today, January 29th 2013 Science & Math Textbook Listings 21
Landau's Theoretical Minimum General Discussion 6