The virtue particle is mass on-shell or off-shell?

In summary, In QFT, the position and momentum representations are both Fourier integrals, but the position representation (of the propagator) is a Fourier integral over d3p, while the momentum representation is obtained by the trick of extending the physical variable p to a mathematical variable q, where q = p and q0 is mathematically convenient. The momentum representation (of the propagator) is a Fourier integral over d4q, see (6.2.18) at p277.
  • #1
ndung200790
519
0
Please teach me this:
I do not know whether interaction transfer boson particle(virtue particle) is mass on-shell or mass off-shell(meaning square(4-p)=square(m) or= -square(m)) or both case happening?
Thank you very much in advance.
 
Physics news on Phys.org
  • #2
hi ndung200790! :smile:

anything with creation and annihilation operators must be on-shell

so in the position representation, the https://www.physicsforums.com/library.php?do=view_item&itemid=287" are on-shell (and 3-momentum is conserved)

in the momentum representation, the virtual particles are off-shell (and 4-momentum is conserved) :wink:
 
Last edited by a moderator:
  • #3
I don't understand this remark. Of course an creation operator wrt. the energy-momentum eigenstates adds an onshell (asymptotically) free particle with the given momentum (and spin or helicity) to the state the creation operator adds on.

In terms of Feynman diagrams, which are nothing else than a special notation for the calculation of S-matrix elements in perturbation theory, these initial- or final-state asymptotically free particles are represented by the external legs. The "virtual particles" are represented by inner lines, connecting to vertices of the diagram. These lines stand for particle propagators. At each vertex, energy-momentum conservation holds, and usually the four momenta of internal lines are off-shell. It's in fact a problem in naive perturbation theory, when the kinematics of a process is such that an internal line's four momentum becomes on-shell since there the propagator has a pole. The reason are usually infrared of collinear divergences when massless particles are involved. These divergences have to be remedied by an appropriate resummation of many diagrams (e.g., by the Bloch-Nordsieck argument in QED).
 
  • #4
hi vanhees71! :smile:
vanhees71 said:
… At each vertex, energy-momentum conservation holds …

but not in the position representation (coordinate-space representation), only in the momentum representation?

apart from that, aren't you agreeing with me? :confused:
 
  • #5
I just said that I don't understand what you mean. What do you mean by "on shell" in the position representation?
 
  • #6
Thanks all of you very much.Knowing that in momentum representation the virtue particle is mass off-shell is important(it seem to me).
 
  • #7
The position and 3-momentum representation theory in normal Quantum Mechanics is already clear.But how about the position and momentum representation in Quantum Field Theory.Please give me a favour to explaint more detail.
 
  • #8
At the moment, I think that the position and momentum representation relate with each other by Fourier transformation(Fourier integral transformation).Is that correct?
 
  • #9
hi ndung200790! :smile:
ndung200790 said:
At the moment, I think that the position and momentum representation relate with each other by Fourier transformation(Fourier integral transformation).Is that correct?

no

the position and momentum representations are both Fourier integrals

the position representation (of the propagator) is a Fourier integral over d3p, see (6.2.1) at p274

the momentum representation is obtained by the trick of extending the physical variable p to a mathematical variable q, where q = p and q0 is mathematically convenient

the momentum representation (of the propagator) is a Fourier integral over d4q, see (6.2.18) at p277 :wink:
 
  • #10
Considering propagator,we use Fourier integral over 4-momentum.Please teach me why we consider the energy as mathematical convenient,because the energy is determined by 3-momentum then it seems that 4-momentum q is mass on-shell but not off-shell.
 
  • #11
ndung200790 said:
Considering propagator,we use Fourier integral over 4-momentum.Please teach me why we consider the energy as mathematical convenient,because the energy is determined by 3-momentum …

no, the "energy" q0 is not determined by the 3-momentum q (= p)

q0 is defined as p0 + s, where s is a new variable which can take any value

(and where p0 is the energy determined by the 3-momentum p)

so q = (q0 , q) = (p0 + s , p), which is off-shell :smile:

see p276 of Weinberg "Quantum Theory of Fields", just below (6.2.15), viewable online (it says "Volume 2", bit it's actually Volume 1 :rolleyes:) at http://books.google.co.uk/books?id=...t=book-preview-link&resnum=1&ved=0CC4QuwUwAA"

(sorry, the references in my previous post were to the same book … i confused this with another thread, and thought you'd already mentioned you were reading Weinberg :redface:)

btw, the mathematical convenience is that integrating over d3p is not Lorentz invariant (nothing that's 3D can be Lorentz invariant), so we invent a new 4D variable q that is Lorentz invariant, and we integrate over d4q :wink:
 
Last edited by a moderator:
  • #12
Then 4-q vector may be space-like vector,may be time-like vector?
 
  • #13
In QFT book of Schroder&Peskin,chapter 12.4 ''Renormalization of Local Operators'' I do not understand why they can neglect the square of 4-q vector comperision with square of massive boson,because I think that the square of 4-q is arbitrary value(4-q is mass off-shell but arbitrary).Please be pleasure to teach me this.
 
  • #15
tiny-tim said:
hi ndung200790! :smile:

anything with creation and annihilation operators must be on-shell

so in the position representation, the https://www.physicsforums.com/library.php?do=view_item&itemid=287" are on-shell (and 3-momentum is conserved)

How did reach this conclusion? why should on-shell/off-shell "status" of the fields depends on the representations?
 
Last edited by a moderator:
  • #16
samalkhaiat said:
How did reach this conclusion?

creation and annihilation operators are only defined for on-shell particles
why should on-shell/off-shell "status" of the fields depends on the representations?

"off-shell" isn't a property of the field, it's a property of the variable, q
 

1. Is the virtue particle considered to have mass?

The virtue particle is considered to have a virtual mass, which means it does not exist in a physical sense but can still have an effect on other particles.

2. What is the difference between on-shell and off-shell for the virtue particle?

The terms on-shell and off-shell refer to the state of the virtue particle. On-shell means that the particle is in a stable, physical state with a defined mass and energy, while off-shell means it is in an unstable, virtual state with no defined mass.

3. How does the virtue particle's mass affect other particles?

The virtue particle's mass does not directly affect other particles as it is not a physical particle. However, it can interact with other particles through various forces and can influence their behavior.

4. Can the mass of the virtue particle change?

The mass of the virtue particle is considered to be a constant, as it is not a physical particle and does not have a defined mass like other particles. However, its effects on other particles may change depending on the strength of the forces it interacts with.

5. How is the mass of the virtue particle measured?

As the virtue particle is not a physical particle, its mass cannot be measured directly. Instead, it is inferred through its interactions with other particles and their resulting effects.

Similar threads

  • Quantum Physics
Replies
3
Views
934
  • Quantum Physics
Replies
3
Views
1K
  • Quantum Physics
2
Replies
47
Views
4K
  • Quantum Physics
Replies
2
Views
712
  • Introductory Physics Homework Help
Replies
16
Views
494
  • Quantum Physics
Replies
3
Views
778
Replies
5
Views
1K
  • High Energy, Nuclear, Particle Physics
Replies
6
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
11
Views
1K
Replies
9
Views
3K
Back
Top