Completion of Metric Space Proof from "Intro. to Func. Analysis w/ Applications"


by Petrarch
Tags: completion, metric, proof, space
Petrarch
Petrarch is offline
#1
Jul1-12, 12:48 PM
P: 2
1. The problem statement, all variables and given/known data

I have started studying Functional Analysis following "Introduction to Functional Analysis with Applications". In chapter 1-6 there is the following proof

For any metric space [itex]X[/itex], there is a complete metric space [itex]\hat{X}[/itex] which has a subspace [itex]W[/itex] that is isometric with [itex]X[/itex] and is dense in [itex]\hat{X}[/itex]

(Page 1 & 2) http://i.imgur.com/CRXjh.png
(Page 3 & 4) http://i.imgur.com/PogqC.png

I think I understand parts (a) and (b). At the top of page 3, section (c) where it is proving [itex]\hat{X}[/itex] is complete it states:

Let [itex](\hat{x_{n}})[/itex] be any Cauchy Sequence in [itex]\hat{X}[/itex]. Since [itex]W[/itex] is dense in [itex]\hat{X}[/itex], for every [itex]\hat{x_{n}}[/itex], there is a [itex]\hat{z_{n}}\varepsilon W[/itex] such that [itex]\hat{d}(\hat{x_{n}},\hat{z_{n}}) < \frac{1}{n}[/itex]

I do not understand why we choose [itex] \frac{1}{n}[/itex], would some ε > 0, for each n, not suffice? I assume it must not, but I don't see why, so I must not understand this proof.

Any help would be greatly appreciated, i am pretty dumb and this has puzzled me for a couple days.
Phys.Org News Partner Science news on Phys.org
Going nuts? Turkey looks to pistachios to heat new eco-city
Space-tested fluid flow concept advances infectious disease diagnoses
SpaceX launches supplies to space station (Update)

Register to reply

Related Discussions
Applicability of "Intro To Algebra" and "Intro to Real Analysis" to Physics Academic Guidance 6
"Closed" set in a metric space Calculus & Beyond Homework 16
Completion of a metric space Calculus 7
Metric space completion Calculus & Beyond Homework 3
A "physics proof" of finite Volume of Moduli space Beyond the Standard Model 0