Find Polynomial of Degree <2 to Satisfy (1, p), (2, q), (3, r)

In summary, using a system of linear equations, a polynomial of degree greater than or equal to 2 can be found that goes through the points (1, p), (2, q), and (3, r) for any values of p, q, and r. The coefficients of this polynomial can be determined by solving the system of equations, resulting in the polynomial f(t) = 1/2 r t^2 + 1/2 p t^2 - q t^2 + 4q t - 5/2 p t - 3/2 r t + 3 p + r - 3q. This polynomial can be used to find the corresponding y-values for any x-values, making it
  • #1
VinnyCee
489
0
Find a polynomial of degree < 2 [a polynomial of the form [itex]f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2[/itex]] whose graph goes through the points (1, p), (2, q), (3, r), where p, q, r are arbitrary constants. Does such a polynomial exist for all values of p, q, r?


Here is what I have so far:

(1, p) ==> [itex]p\,=\,a\,+\,b\,+\,c[/itex]
(2, q) ==> [itex]q\,=\,a\,+\,2b\,+\,4c[/itex]
(3, r) ==> [itex]r\,=\,a\,+\,3b\,+\,9c[/itex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
1 & 2 & 4 & q \\
1 & 3 & 9 & r
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_2\,=\,R_2\,-\,R_1[/tex]
[tex]R_3\,=\,R_3\,-\,R_1[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 2 & 8 & r - p
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_3\,=\,R_3\,-\,2R_2[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 0 & 2 & r - q
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_3\,=\frac{1}{2}\,R_3[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 0 & 1 & \frac{1}{2}\left(r - q\right)
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_2\,=\,R_2\,-\,3R_3[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 0 & \frac{5}{2}\,q\,-\,p\,-\,\frac{3}{2}\,r \\
0 & 0 & 1 & \frac{1}{2}\left(r - q\right)
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_1\,=\,R_1\,-\,R_2\,-\,R_3[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 0 & 0 & 2p\,-\,2q\,+\,r \\
0 & 1 & 0 & \frac{1}{2}\left(5q\,-\,2p\,-\,3r\right) \\
0 & 0 & 1 & \frac{1}{2}\left(r - q\right)
\end{array} \right]
\end{displaymath}[/tex]

[tex]a\,=\,2p\,-\,2q\,+\,r[/tex]
[tex]b\,=\,\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)[/tex]
[tex]c\,=\,\frac{1}{2}\,\left(r\,-\,q\right)[/tex]


[tex]f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2[/tex]
[tex]f\left(t\right)\,=\,\left(2p\,-\,2q\,+\,r\right)\,+\,\left[\frac{1}{2}\,\left(5q\,-\,2p\,-\,3r\right)\right]\,t\,+\,\left[\frac{1}{2}\,\left(r\,-\,q\right)\right]\,t^2[/tex]
[tex]f\left(t\right)\,=\frac{1}{2}\,r\,t^2\,-\,\frac{1}{2}\,q\,t^2\,+\,\frac{5}{2}\,q\,t\,-\,\frac{3}{2}\,r\,t\,-\,p\,t\,+\,2\,p\,+\,r\,-\,2\,q[/tex]

But when I try a set of arbitrary numbers [(1, 8), (2, 12), (3, 3)], I get an equation that does not match the points:

[tex]f\left(t\right)\,=\,-\frac{9}{2}\,t^2\,+\,\frac{35}{2}\,t\,-\,5[/tex]

[tex]f\left(1\right)\,=\,-\frac{9}{2}\,(1)^2\,+\,\frac{35}{2}\,(1)\,-\,5\,=\,8[/tex]

[tex]f\left(2\right)\,=\,-\frac{9}{2}\,(2)^2\,+\,\frac{35}{2}\,(2)\,-\,5\,=\,12[/tex]

[tex]f\left(3\right)\,=\,-\frac{9}{2}\,(3)^2\,+\,\frac{35}{2}\,(3)\,-\,5\,=\,7[/tex]

However, [itex]f\left(3\right)[/itex] should be equal to r, which is 3, not 7.

Please help:)
 
Last edited:
Physics news on Phys.org
  • #2
VinnyCee said:
Find a polynomial of degree < 2 [a polynomial of the form ] whose graph goes through the points (1, p), (2, q), (3, r), where p, q, r are arbitrary constants. Does such a polynomial exist for all values of p, q, r?
Of degree < 2? Then it is linear, of the form y= mx+ b and you can only determine only the two numberss m and b. In general 2 equations will do that. You can choose m and b so that 2 of the requirements (1, p), (2, q), (3, r) are satisfied but not all 3.
 
  • #3
For (p, q, r) = (0, 0, 0) we have (a, b, c) = (0, 0, 0), and therefore a zero polynomial, which has a degree undefined or [tex]-\infty[/tex], so it's less than 2. :biggrin:
 
  • #4
The title says "Find a >2 degree polynomial" and the post itself says
"Find a polynomial of degree < 2".

Is it any wonder I'm confused!
 
  • #5
VinnyCee said:
[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 2 & 8 & r - p
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_3\,=\,R_3\,-\,2R_2[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 0 & 2 & r - q
\end{array} \right]
\end{displaymath}[/tex]

Confusion about <2 vs >2 aside, your derivation has an error in the quoted section. You substract [itex]2 R_2[/itex] from [itex]R_3[/itex], but in the augmented part of the matrix you've only subtracted [itex]1 R_2[/itex], resulting in r - q instead of r + p - 2q. I didn't check to see if everything else was correct, but this is certainly a place to start with.
 
  • #6
Sorry for the confusion!

The polynomial needs to have a degree of GREATER THAN OR EQUAL TO 2.

So it needs to have at least one squared term.

Here is the corrected derivation with help from Mute (Thanks!):

(1, p) ==> [itex]p\,=\,a\,+\,b\,+\,c[/itex]
(2, q) ==> [itex]q\,=\,a\,+\,2b\,+\,4c[/itex]
(3, r) ==> [itex]r\,=\,a\,+\,3b\,+\,9c[/itex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
1 & 2 & 4 & q \\
1 & 3 & 9 & r
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_2\,=\,R_2\,-\,R_1[/tex]
[tex]R_3\,=\,R_3\,-\,R_1[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 2 & 8 & r - p
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_3\,=\,R_3\,-\,2R_2[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 0 & 2 & r - 2q + p
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_3\,=\frac{1}{2}\,R_3[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 3 & q - p \\
0 & 0 & 1 & \frac{1}{2} r - q + \frac{1}{2} p
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_2\,=\,R_2\,-\,3R_3[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & p \\
0 & 1 & 0 & -\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r \\
0 & 0 & 1 & \frac{1}{2} r - q + \frac{1}{2} p
\end{array} \right]
\end{displaymath}[/tex]

[tex]R_1\,=\,R_1\,-\,R_2\,-\,R_3[/tex]

[tex]\begin{displaymath}
\left[ \begin{array}{ccc|c}
1 & 0 & 0 & 3\,p\,-\,3\,q\,+\,r \\
0 & 1 & 0 & -\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r \\
0 & 0 & 1 & \frac{1}{2} r - q + \frac{1}{2} p
\end{array} \right]
\end{displaymath}[/tex]

[tex]a\,=\,3\,p\,-\,3\,q\,+\,r[/tex]
[tex]b\,=\,-\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r[/tex]
[tex]c\,=\,\frac{1}{2} r - q + \frac{1}{2} p[/tex]


[tex]f\left(t\right)\,=\,a\,+\,bt\,+\,ct^2[/tex]
[tex]f\left(t\right)\,=\,\left(3\,p\,-\,3\,q\,+\,r\right)\,+\,\left[-\frac{5}{2}\,p\,+\,4\,q\,-\,\frac{3}{2}\,r\right]\,t\,+\,\left[\frac{1}{2} r - q + \frac{1}{2} p\right]\,t^2[/tex]
[tex]f\left(t\right)\,=\frac{1}{2}\,r\,t^2\,+\,\frac{1}{2}\,p\,t^2\,-\,q\,t^2\,+\,4\,q\,t\,-\,\frac{5}{2}\,p\,t\,-\,\frac{3}{2}\,r\,t\,+\,3\,p\,+\,r\,-\,3\,q[/tex]

[tex]p\,=\,8[/tex]
[tex]q\,=\,12[/tex]
[tex]r\,=\,3[/tex]

So now it works for these numbers!

[tex]f\,(\,t\,)\,=\,-\frac{13}{2}\,t^2\,+\,\frac{47}{2}\,t\,-\,9[/tex]

[tex]f\,(\,1\,)\,=\,-\frac{13}{2}\,(\,1\,)^2\,+\,\frac{47}{2}\,(\,1\,)\,-\,9\,=\,8[/tex]
[tex]f\,(\,2\,)\,=\,-\frac{13}{2}\,(\,2\,)^2\,+\,\frac{47}{2}\,(\,2\,)\,-\,9\,=\,12[/tex]
[tex]f\,(\,3\,)\,=\,-\frac{13}{2}\,(\,3\,)^2\,+\,\frac{47}{2}\,(\,3\,)\,-\,9\,=\,3[/tex]

But how can I figure (or prove) whether or not a polynomial exists for all values of p, q, and r? There does exist such a polynomial for all p, q, and r right?
 
Last edited:

1. How can I find a polynomial of degree <2 that satisfies certain points?

In order to find a polynomial of degree <2 (i.e. a linear or constant function) that satisfies a specific set of points, you can use the method of substitution. Plug in the x and y values of each point into the general form of a polynomial of degree <2 (i.e. y = ax + b) and solve for the coefficients a and b. This will give you the specific polynomial that satisfies the given points.

2. Can I use more than three points to find a polynomial of degree <2?

No, it is not possible to find a polynomial of degree <2 that satisfies more than two points. This is because a polynomial of degree <2 can only have a maximum of two unknown coefficients (a and b), and therefore can only satisfy two points.

3. What is the importance of using the degree <2 in this problem?

The degree <2 is important because it allows us to find a simple, linear or constant function that satisfies a specific set of points. Using a higher degree polynomial would result in a more complex function that may not accurately represent the given points.

4. Is there a specific method or formula for finding a polynomial of degree <2 that satisfies a given set of points?

Yes, the method of substitution mentioned in the first question is the most common approach for finding a polynomial of degree <2 that satisfies a specific set of points. However, there may be other methods or formulas that can be used depending on the specific problem.

5. Can I use this method to find a polynomial of any degree that satisfies a given set of points?

No, the method of substitution is only applicable for finding a polynomial of degree <2 that satisfies a given set of points. For higher degree polynomials, different methods or formulas will need to be used.

Similar threads

  • Linear and Abstract Algebra
Replies
1
Views
849
  • Linear and Abstract Algebra
Replies
14
Views
1K
  • Linear and Abstract Algebra
Replies
3
Views
2K
  • Linear and Abstract Algebra
Replies
5
Views
935
  • Linear and Abstract Algebra
Replies
1
Views
742
  • Linear and Abstract Algebra
Replies
3
Views
809
  • Linear and Abstract Algebra
Replies
2
Views
955
  • Linear and Abstract Algebra
Replies
8
Views
1K
  • Linear and Abstract Algebra
Replies
7
Views
914
  • Linear and Abstract Algebra
Replies
2
Views
688
Back
Top