What exactly do you study in reactor physics?

In summary, nuclear reactor physics can cover both fission and fusion. It is more focused on the reactor core, but one can develop a strong mathematical background and apply their knowledge from linear algebra, functional analysis, and PDE's to some computational problems in nuclear engineering.
  • #1
Hercuflea
596
49
Hey I am a math major looking to do an REU (and later a masters/PhD.) in nuclear engineering and I am interested in the field of reactor physics. I hear it tossed around a lot but I don't really know the definition of it. I'm taking a radiation physics class next semester at a separate technological university, but I think that it is more related to materials. Does the field of reactor physics cover both fission and fusion? I am guessing you deal mostly with the reactor core in this field. Mainly I want to be able to develop a strong mathematical background and apply my knowledge from linear algebra, functional analysis, and PDE's to some computational problems in Nuclear engineering.
 
Engineering news on Phys.org
  • #2
Hercuflea said:
Hey I am a math major looking to do an REU (and later a masters/PhD.) in nuclear engineering and I am interested in the field of reactor physics. I hear it tossed around a lot but I don't really know the definition of it. I'm taking a radiation physics class next semester at a separate technological university, but I think that it is more related to materials. Does the field of reactor physics cover both fission and fusion? I am guessing you deal mostly with the reactor core in this field. Mainly I want to be able to develop a strong mathematical background and apply my knowledge from linear algebra, functional analysis, and PDE's to some computational problems in Nuclear engineering.
In general, nuclear reactor physics is devoted to fission systems, and one studies the neutron physics, either diffusion theory or transport theory.

There are several classic texts on Nuclear Reactor Theory or Nuclear Reactor Physics:


George Bell and Samuel Glasstone, Nuclear Reactor Theory, 1968, 1970
John Lamarsh, Introduction to Nuclear Reactor Theory, 1972
Weston Stacey, Nuclear Reactor Physics, 2001
Allan F. Henry, Nuclear-Reactor Analysis, 1975

These tend to address thermal or moderated (water or graphite) reactors, which are the basis of the commercial nuclear industry. In the case of water, it's more along the lines of pressurized water as opposed to boiling water. Emphasis at the introductory level is often on diffusion theory (Helmholtz equation), and steady-state, with some introduction to kinetics (time-dependent) theory.

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, 1976

See also - https://www.physicsforums.com/showthread.php?t=243543

Duderstadt and Hamilton goes more into transport and multigroup theory. It has been typically used at the graduate level.

If one is interested in fast reactors, then Alan Walter and Albert Reynolds, Fast Breeder Reactors, 1981, would be of interest. It delves into the peculiarities and nuances unique to fast reactors.

Fusion engineering deals with nuclear interactions of charged particles, nuclei and electrons, and the fusion reaction is obviously different from fission. In addition, one has to be familiar with plasma physics. Neutrons are not so important with respect to the plasma, but they are important in regard to the surrounding structure and blanket region of a fusion reactor.
 
  • #3
Hey Astronuc,

Thanks for the detailed reply. Which of these books would you recommend as an introduction? By the way I recognized Weston Stacey, he's a professor at Ga Tech (that's where I'll be taking the radiation physics class next semester as a transient student.)
 
  • #4
For just an introduction you might consider Glasstone and Sesonske's classic "Nuclear Reactor Engineering"

but i suggest the 1967 edition because it has a lot of practical information about the reactor systems that wasn't in Lamarsch when i took the course in 1968.


https://www.amazon.com/dp/B0026MFBB8/?tag=pfamazon01-20

The newer edition omits a whole section on reactor instrumentation.
This old one is inexpensive, $11 a place or two on Ebay.
But look for that Yankee plant on the cover. The new orange starburst edition was a disappointment to me.
 
Last edited by a moderator:
  • #5
Hercuflea said:
Hey Astronuc,

Thanks for the detailed reply. Which of these books would you recommend as an introduction? By the way I recognized Weston Stacey, he's a professor at Ga Tech (that's where I'll be taking the radiation physics class next semester as a transient student.)
Perhaps Stacey's book would be good.

MIT uses Elmer L. Lewis, Fundamentals of Nuclear Reactor Physics. (Academic Press, 2008. ISBN: 9780123706317) in their undergraduate Neutron Science and Reactor Physics.
http://ocw.mit.edu/courses/nuclear-...ience-and-reactor-physics-fall-2009/index.htm

Then there is Engineering of Nuclear Systems
http://ocw.mit.edu/courses/nuclear-engineering/22-06-engineering-of-nuclear-systems-fall-2010/

Other nuclear engineering courses: http://ocw.mit.edu/courses/nuclear-engineering/index.htm

There is a simple introductory book - http://www.nr.titech.ac.jp/coe21/eng/events/NuclReactorTheoryTextbook.pdf
 
  • #6
I'd also recommend this course that has notes and I believe some lectures on reactor physics and other subjects in Nuclear Engineering. http://www.nuceng.ca/ep4d3/ep4d3home.htm

I'd also suggest looking a bit into numerical methods for solving differential equations.
 
  • #7
Thermalne said:
I'd also recommend this course that has notes and I believe some lectures on reactor physics and other subjects in Nuclear Engineering. http://www.nuceng.ca/ep4d3/ep4d3home.htm

I'd also suggest looking a bit into numerical methods for solving differential equations.

Damn, I had to choose between that course and the radiation physics course next semester because they were at the same time. Oh well, Ill pick up numerical methods next year.
 
  • #8
Hercuflea said:
Damn, I had to choose between that course and the radiation physics course next semester because they were at the same time. Oh well, Ill pick up numerical methods next year.

Don't worry about it now. It shouldn't hinder you in learning the physics behind it all.
 

1. What is reactor physics and what do you study in this field?

Reactor physics is a branch of nuclear engineering that deals with the behavior and characteristics of nuclear reactors. In this field, we study the physical processes and principles involved in the operation and design of nuclear reactors.

2. What are the main topics covered in reactor physics?

Some of the main topics covered in reactor physics include nuclear reactions, neutron transport, nuclear fission, reactor kinetics, and reactor dynamics. These topics are essential in understanding the behavior and performance of nuclear reactors.

3. How does reactor physics contribute to the nuclear industry?

Reactor physics is crucial in the development and operation of nuclear power plants. It helps in designing safe and efficient reactors, predicting their performance, and optimizing their operation. Reactor physics also plays a significant role in nuclear waste management and the development of new nuclear technologies.

4. What skills are required to study reactor physics?

To study reactor physics, one needs a strong foundation in mathematics, physics, and nuclear engineering principles. It also requires critical thinking and problem-solving skills, as well as the ability to work with complex systems and data analysis.

5. What career opportunities are available in reactor physics?

Studying reactor physics can lead to a variety of career opportunities in the nuclear industry, such as a nuclear engineer, reactor designer, nuclear safety specialist, or nuclear research scientist. It can also open doors to other fields such as nuclear medicine, national defense, and energy policy.

Similar threads

  • Nuclear Engineering
Replies
1
Views
1K
  • Nuclear Engineering
Replies
19
Views
2K
  • Nuclear Engineering
Replies
2
Views
1K
Replies
10
Views
2K
  • Nuclear Engineering
3
Replies
70
Views
8K
  • Nuclear Engineering
Replies
2
Views
2K
  • Nuclear Engineering
Replies
2
Views
1K
  • STEM Career Guidance
Replies
5
Views
2K
Replies
4
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
1
Views
805
Back
Top