Heisenberg's Uncertainty Principle

In summary, according to the Heisenberg Uncertainty Principle, the product of the uncertainty in the momentum measurement Δp and the uncertainty in the position measurement Δq of a particle is greater than or equal to Planck's constant h divided by 4\pi. This is due to the wave-particle duality, and is not due to poor measurement or experimental technique. Heisenberg's Uncertainty Principle is usually limited to only small particles, but this does not mean that particles do not have a physical location unless and until we observe them. Does this mean that Heisenberg's Uncertainty Principle necessarily pits Classical physics (and Logic and common sense and billiards) against the Copenhagen School? Has Heisenberg
  • #1
eehiram
116
0
My source is the high school chemistry textbook:
General Chemistry, 2nd Edition, by Donald A. McQuarrie and Peter A. Rock, published 1987
(This is not for a high school homework assignment.)

According to Heisenberg's Uncertainty Principle, the product of the uncertainty in the momentum measurement Δp and the uncertainty in the position measurement Δq of a particle is greater than or equal to Planck's constant h divided by 4[itex]\pi[/itex]:

Δp Δq ≥ h / (4[itex]\pi[/itex])

This is not due to poor measurement or poor experimental technique, as is sometimes supposed: that bouncing waves or particles affects the location of the particle being measured, like in a billiard collision. (The measurement waves or particles are presumed to be of comparable size to the particle being measured.)

Heisenberg's Uncertainty Principle is usually limited to only small particles.

Does this mean that particles do not have a physical location unless and until we observe them?

(I do not want to make a broad question, but rather a narrow question.)

Does Heisenberg's Uncertainty Principle necessarily pit Classical physics (and Logic and common sense and billiards) against the Copenhagen School?

Has Heisenberg's Uncertainty Principle agreed with the majority of experimental laboratory results?
 
Chemistry news on Phys.org
  • #2
The HUP is trivially easy to demonstrate experimentally and there are no results that disagree with it. If there were, it would have been invalidated. That's how science works.

There are MANY discussions about HUP on this forum if you want more details. You are correct about it being a fundamental fact of nature, not having anything to do with our measurement capabilities.
 
  • #4
Thanks for the responses and the link. I may have to make a more specific, narrow question about a particular aspect of HUP. I'll try to come up with something later.

I see on ZapperZ's physics blog that the width of the slit can be compared to the de Broglie wavelength of the particle (or in the case of light, the wavelength) passing through the slit. When the width becomes smaller than the de Broglie wavelength, then the quantum effect of the single slit diffraction pattern takes hold: the spread of the particles being detected starts expanding; the "Gaussian spread" becomes fatter and fatter. (This is from the 3rd to last paragraph, starting with "It gets interesting as you decrease the slit.")
 
  • #5
Perhaps one may enlighten me on the occurence of 'Heisenberg's Uncertainty' in Chemistry as a whole, and in elementary (i.e. high-school) chemistry in particular...
 
  • #6
Typically it is just mentioned as a part of intro to quantum chemistry. Intro doesn't say a word about math, just says electrons are on orbitals, what kinds of orbitals are there, how they are described by quantum numbers, how they are filled. Not mentioning HUP won't change the general picture as shown, as it is not used for anything, more like added as a random fact.

MHO, YMMV.
 
  • #7
Again, the textbook from 1987 is:
General Chemistry, 2nd Ed., by Donald A. McQuarrie and Peter A. Rock

Proceeding somewhat historically, first a non-quantum chemistry is presented:

Chapter 1: Atoms and Molecules
Includes Elements, Metals and Nonmetals, Dalton's Atomic Theory, Molecules, etcetera

Interchapter A: Separation of Mixtures

Chapter 2: Chemical Reactions and the Periodic Table
Includes Group Properties, Periodicity, Periodic Table, Groups of Elements, etcetera

Interchapter B: The Alkali Metals

Chapter 3: Chemical Calculations
Includes Mole, Avogadro's Number, Stoichiometry, etcetera

Interchapter C: The Main Group Metals

Chapter 4: The Properties of Gases
Includes Boyle's Law, Charles' Law, Avogadro's Law, Ideal-Gas Equation

Interchapter D: Hydrogen and Oxygen

Chapter 5: Thermochemistry
Includes 1st Law of Thermodynamics, Chemical Reactions and Heat, Enthalpy Changes, etcetera

Interchapter E: Energy Utilization

--------------

After this historical non-quantum chemistry is presented, the textbook then pivots to quantum chemistry in chapter 6:

Chapter 6: The Quantum Theory and Atomic Structure
Includes 1st Ionization Energies, Ionizations Energies and Periodicity, Electromagnetic Spectrum, Line Spectra, Photons, Photoelectric Effect, De Broglie Wavelength, Electron Microscope, Quantization, Electronic transitions, Heisenberg Uncertainty Principle, etcetera

In the margins, some brief biographies are provided of early 1900s quantum pioneers:
Max Planck, Albert Einstein, Louis de Broglie, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Wolfgang Pauli. The remaining chapters (up to chapter 24 and interchapter N) derive from a foundation of quantum chemistry.

Thank you for your inquiry.
 

What is Heisenberg's Uncertainty Principle?

Heisenberg's Uncertainty Principle is a fundamental concept in quantum mechanics, which states that it is impossible to know the exact position and momentum of a particle at the same time. This is due to the inherent uncertainty and measurement limitations of quantum systems.

Who discovered Heisenberg's Uncertainty Principle?

Werner Heisenberg, a German physicist, first proposed the concept of uncertainty in quantum mechanics in 1927. He was trying to resolve the discrepancies between classical physics and the emerging field of quantum mechanics.

What is the significance of Heisenberg's Uncertainty Principle?

Heisenberg's Uncertainty Principle has significant implications for our understanding of the behavior of particles on a subatomic level. It challenges the classical notion of determinism and highlights the probabilistic nature of quantum mechanics.

How does Heisenberg's Uncertainty Principle relate to the observer effect?

The observer effect refers to the idea that the act of observing a system can alter its behavior. Heisenberg's Uncertainty Principle is related to this concept because the very act of measuring a particle's position or momentum can affect its state, making it impossible to know both attributes with absolute precision.

Is there any evidence to support Heisenberg's Uncertainty Principle?

Yes, there is a plethora of evidence that supports Heisenberg's Uncertainty Principle. Numerous experiments have been conducted to test its validity, and it has been consistently confirmed by the results. Additionally, the predictions made by the principle have been crucial in the development of modern technology, such as the transistor and laser.

Similar threads

Replies
13
Views
1K
  • Quantum Physics
Replies
2
Views
882
Replies
3
Views
955
Replies
2
Views
329
Replies
14
Views
1K
Replies
8
Views
2K
  • Quantum Physics
Replies
3
Views
254
Replies
5
Views
737
Replies
10
Views
1K
  • Quantum Physics
2
Replies
36
Views
4K
Back
Top