Attractive nature of nuclear forces

In summary, At a distance of 1.5 fermi, the nuclear force becomes maximum and remains attractive in nature. However, at a distance of 0.5 fermi, the nuclear force suddenly becomes repulsive. This can be explained by the exchange of particles, such as pions or ω mesons, which have different properties regarding charge conjugation. The repulsion can also be attributed to quantum degeneracy pressure, where the Pauli exclusion principle causes a repulsive force between particles. However, the exact reason for this repulsion is still uncertain and requires further study.
  • #1
logearav
338
0
"At a distance of 1.5 fermi, the nuclear force becomes maximum and remains attractive in nature. However, at a distance of 0.5 fermi, the nuclear force suddenly becomes repulsive. "

Revered Members,
Nuclear force is a short range force, so naturally when the distance between the nucleons decrease, there should be more attractive force. I can't understand why repulsive force becomes predominant when the distance between the nucleons is of the order of 0.5 fermi.
 
Physics news on Phys.org
  • #2
To really answer this question is quite difficult, since nucleons are made of quarks and gluons, and a full explanation must be sought in lattice QCD calculations. However you can understand it qualitatively the old-fashioned way, in terms of meson exchange. The original idea by Yukawa was that the nuclear force was caused by exchange of an as yet unknown particle. The range of the force would be inversely related to the particle's mass. Sure enough the pion was discovered, with a mass of 140 MeV, implying a range of 197.5/140 = 1.4f.

But is the exchange force attractive or repulsive? That depends on the properties of the particle, namely its behavior under charge conjugation. Pion exchange, it turns out, is attractive. The repulsive part has been sometimes explained by exchange of another particle, the ω meson with spin one and a mass of 780 MeV. The range this time is 197.5/780 = 0.25 f.

There are more elaborate explanations floating around. My main point is that particle exchange does not have to imply an attractive potential, it can be either.
 
  • #3
Bill_K said:
But is the exchange force attractive or repulsive? That depends on the properties of the particle, namely its behavior under charge conjugation.

Could you please elaborate more on this?
I also have no real understanding as how to read of from the characteristics of the particle exchanged whether it will lead to attraction or repulsion. I remember Zee discussing it in his QFT book and linking it to the spin of the particle although I found his argument still quite involved.
 
  • #4
I can't understand why repulsive force becomes predominant when the distance between the nucleons is of the order of 0.5 fermi.


'why' questions ultimately have very few good answers. 'what' happens we are better at describing because we have observational evidence.

As easy way to think about the replusion is Pauli exclusion...but of course that doesn't
really explain 'why'...

Check this out for a description of observed characteristics,
http://en.wikipedia.org/wiki/Nuclear_force

but again exactly 'why' all this occurs is still a bit beyond our reach.
 
  • #5
ok, it IS a result of 'quantum degeneracy pressure'...I've only read about the electron and neutron degeneracy in stars
version, and wikie doesn't have an article on the more general topic.


Electron degeneracy pressure is a particular manifestation of the more general phenomenon of Quantum degeneracy pressure. The Pauli Exclusion Principle disallows two half integer spin particles (fermions) from occupying the same quantum state at a given time. The resulting emergent repulsive force is manifested as a pressure against compression of matter into smaller volumes of space.

http://en.wikipedia.org/wiki/Electron_degeneracy_pressure

edit: Found this additional tidbit:
"Neutron Degeneracy Pressure: Quantum mechanics restricts the number of neutrons that can have low energy. Each neutron must occupy its own energy state. When neutrons are packed together, as they are in a neutron star, the number of available low energy states is too small and many neutrons are forced into high energy states. These high energy neutrons make up the entire pressure supporting the neutron star. Because the pressure arises from this quantum mechanical effect, it is insensitive to temperature, i.e., the pressure doesn't go down as the star cools. Similar to electron degeneracy pressure but, because the neutron is much more massive than the electron, neutron degeneracy pressure is much larger and can support stars more massive than the Chandrasekhar mass limit..."


http://www.astro.virginia.edu/~jh8h/glossary/neutrondegen.htm
 
  • #6
Naty1, Pauli degeneracy cannot be the explanation, since the same repulsive core exists in the interaction between a proton and a neutron. Also between two protons, the exclusion principle needs to be taken into account in the triplet state (spins the same) but does not affect the singlet state.
 

What are nuclear forces?

Nuclear forces are a type of strong force that holds the nucleus of an atom together. They are responsible for binding protons and neutrons together, and are one of the four fundamental forces of nature.

How do nuclear forces contribute to the attractive nature of atoms?

Nuclear forces are what keep the positively charged protons in the nucleus from repelling each other. They are able to overcome the repulsive forces between protons by being much stronger than the electromagnetic force.

Why are nuclear forces considered to be attractive?

Nuclear forces are considered to be attractive because they are able to keep the positively charged protons and neutral neutrons together in the nucleus, despite the repulsive forces at play.

What factors affect the strength of nuclear forces?

The strength of nuclear forces is affected by the distance between nucleons (protons and neutrons), as well as the number of nucleons in the nucleus. The more nucleons present, the stronger the nuclear force will be.

Can nuclear forces be observed or measured?

No, nuclear forces cannot be observed or measured directly. However, scientists can infer their existence and strength through experiments and mathematical models.

Similar threads

  • High Energy, Nuclear, Particle Physics
Replies
14
Views
3K
  • High Energy, Nuclear, Particle Physics
Replies
1
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
1
Views
888
  • High Energy, Nuclear, Particle Physics
Replies
4
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
11
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
433
  • High Energy, Nuclear, Particle Physics
Replies
12
Views
3K
Replies
18
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
13
Views
2K
  • High Energy, Nuclear, Particle Physics
Replies
7
Views
2K
Back
Top