Register to reply

Statistical mechanics: multiplicity

by SoggyBottoms
Tags: mechanics, multiplicity, statistical
Share this thread:
SoggyBottoms
#1
Mar2-12, 12:20 AM
P: 61
1. The problem statement, all variables and given/known data
We have a surface that can adsorb identical atoms. There are N possible adsorption positions on this surface and only 1 atom can adsorb on each of those. An adsorbed atom is bound to the surface with negative energy [itex]-\epsilon[/itex] (so [itex]\epsilon > 0[/itex]). The adsorption positions are far enough away to not influence each other.

a) Give the multiplicity of this system for [itex]n[/itex] adsorbed atoms, with [itex]0 \leq n \leq N[/itex].

b) Calculate the entropy of the macrostate of n adsorbed atoms. Simplify this expression by assuming N >> 1 and n >> 1.

c) If the temperature of the system is T, calculate the average number of adsorbed atoms.

3. The attempt at a solution

a) [itex]\Omega(n) = \frac{N!}{n! (N - n)!}[/itex]

b) [itex]S = k_b \ln \Omega(n) = k_b \ln \left(\frac{N!}{n! (N - n)!}\right)[/itex]

Using Stirling's approximation: [itex]S \approx k_B ( N \ln N - N - n \ln n - n - (N - n) \ln (N - n) - (N - n) = k_B ( N \ln N - n \ln n - (N - n) \ln (N - n) [/itex]

A Taylor expansion around n = 0 then gives: [itex] S \approx k_B (- \frac{n^2}{2N} + ...)\approx -\frac{k_b n^2}{2N}[/itex]

c) I'm not even sure if the previous stuff is correct, but I have no idea how to do this one. Any hints?
Phys.Org News Partner Science news on Phys.org
Pilot sites in energy from coffee waste show good results
Startups offer banking for smartphone users
Factor in naked mole rat's cells enhances protein integrity
Mute
#2
Mar3-12, 06:42 AM
HW Helper
P: 1,391
Quote Quote by SoggyBottoms View Post
1. The problem statement, all variables and given/known data
We have a surface that can adsorb identical atoms. There are N possible adsorption positions on this surface and only 1 atom can adsorb on each of those. An adsorbed atom is bound to the surface with negative energy [itex]-\epsilon[/itex] (so [itex]\epsilon > 0[/itex]). The adsorption positions are far enough away to not influence each other.

a) Give the multiplicity of this system for [itex]n[/itex] adsorbed atoms, with [itex]0 \leq n \leq N[/itex].

b) Calculate the entropy of the macrostate of n adsorbed atoms. Simplify this expression by assuming N >> 1 and n >> 1.

c) If the temperature of the system is T, calculate the average number of adsorbed atoms.

3. The attempt at a solution

a) [itex]\Omega(n) = \frac{N!}{n! (N - n)!}[/itex]

b) [itex]S = k_b \ln \Omega(n) = k_b \ln \left(\frac{N!}{n! (N - n)!}\right)[/itex]

Using Stirling's approximation: [itex]S \approx k_B ( N \ln N - N - n \ln n - n - (N - n) \ln (N - n) - (N - n) = k_B ( N \ln N - n \ln n - (N - n) \ln (N - n) [/itex]

A Taylor expansion around n = 0 then gives: [itex] S \approx k_B (- \frac{n^2}{2N} + ...)\approx -\frac{k_b n^2}{2N}[/itex]

c) I'm not even sure if the previous stuff is correct, but I have no idea how to do this one. Any hints?
Part (a) looks good, but you made a couple of sign mistakes in part (b). In the terms in the denominator you forgot to distribute the negative sign to the second term in n ln n - n and (N-n) ln(N-n). I've corrected the signs here:

[tex]S \approx k_B ( N \ln N - N - n \ln n + n - (N - n) \ln (N - n) + (N - n) = k_B ( N \ln N - n \ln n - (N - n) \ln (N - n) [/tex]

This change will result in some cancellations that help simplify your expression. Rewriting

[tex](N-n)\ln(N-n) = \left(1-\frac{n}{N}\right)N\ln N + (N-n)\ln\left(1-\frac{n}{N}\right)[/tex]

will help you make some more cancellations.

Another mistake you made in your original attempt was that you expanded around n = 0, but you are told n is much greater than 1, so you can't do that expansion. What you can do, however, is assume that while n is much greater than 1, it is still much less that N, such that n/N is small, and you can expand the above logarithms in n/N.

This will give you a simple expression for the entropy. To get the temperature, you need to write the entropy as a function of the total energy. Right now your entropy is a function of number. However, you are told how much energy there is per site, so you can figure out what the total energy is for n adsorbed atoms. Use this to rewrite the entropy in terms of the total energy.


Register to reply

Related Discussions
Statistical mechanics Quantum Physics 2
Statistical Mechanics Introductory Physics Homework 3
Is it possible to take statistical mechanics without quantum mechanics? Academic Guidance 5
Statistical Mechanics (multiplicity/accesbile microstates question) Classical Physics 0
Statistical Mechanics Classical Physics 0