Correct Edition of Hoffman and Kunze's linear algebra textbook?

In summary, Hoffman and Kunze's book on linear algebra was originally written for an undergraduate course at MIT but has since been used in a variety of courses. The second edition, which was published in 1961 and has 326 pages, includes new material on canonical forms and inner product spaces. The authors have made changes to the chapter structure to allow for flexibility in teaching and have also included a variety of examples and exercises. The book covers topics such as systems of linear equations, vector spaces, linear transformations, determinants, and inner product spaces, with an emphasis on understanding abstract concepts rather than just memorizing formulas. Overall, it is a comprehensive and well-rounded resource for learning linear algebra.
  • #1
brainy kevin
24
0
I've been trying to learn linear algebra, and I heard Hoffman and Kunze's book recommended many times. Now, luckily for me, our library system has it. I got it, and it is somewhat unlike the book I was recommended. Rather than the purple and blue cover it has on amazon, it is just a plane dark blue cover. The copyright date is 1961, and mine has 326 pages as opposed to 407. I believe mine may be the first edition, while it seems the second edition is the one most recommended. Is my book simply an alternate printing, or is it a different version? If so, is the first edition as good as the second?
 
Physics news on Phys.org
  • #2
Here is the Preface of my 2nd edition, now dusty and on the shelf. I never used the 1st, so make of this what you will.
PS. don't feel sorry for me, I just scanned it and didnt actually write it all out... took about 20 seconds.

Preface

Our original purpose in writing this book was to provide a text for the undergraduate
linear algebra course at the Massachusetts Institute of Technology. This
course was designed for mathematics majors at the junior level, although threefourths
of the students were drawn from other scientific and technological disciplines
and ranged from freshmen through graduate students. This description of the
M.I.T. audience for the text remains generally accurate today. The ten years since
the first edition have seen the proliferation of linear algebra courses throughout
the country and have afforded one of the authors the opportunity to teach the
basic material to a variety of groups at Brandeis University, Washington University
(St. Louis), and the University of California (Irvine).
Our principal aim in revising Linear Algebra has been to increase the variety
of courses which can easily be taught from it. On one hand, we have structured the
chapters, especially the more difficult ones, so that there are several natural stopping
points along the way, allowing the instructor in a one-quarter or one-semester
course to exercise a considerable amount of choice in the subject matter. On the
other hand, we have increased the amount of material in the text, so that it can be
used for a rather comprehensive one-year course in linear algebra and even as a
reference book for mathematicians.
The major changes have been in our treatments of canonical forms and inner
product spaces. In Chapter 6 we no longer begin with the general spatial theory
which underlies the theory of canonical forms. We first handle characteristic values
in relation to triangulation and diagonalization theorems and then build our way
up to the general theory. We have split Chapter 8 so that the basic material on
inner product spaces and unitary diagonalization is followed by a Chapter 9 which
treats sesqui-linear forms and the more sophisticated properties of normal operators,
including normal operators on real inner product spaces.
We have also made a number of small changes and improvements from the
first edition. But the basic philosophy behind the text is unchanged.
We have made no particular concession to the fact that the majority of the
students may not be primarily interested in mathematics. For we believe a mathematics
course should not give science, engineering, or social science students a
hodgepodge of techniques, but should provide them with an understanding of
basic mathematical concepts.
. . .
On the other hand, we have been keenly aware of the wide range of backgrounds
which the students may possesses and, in particular, of the fact that the
students have had very little experience with abstract mathematical reasoning.
For this reason, we have avoided the introduction of too many abstract ideas at
the very beginning of the book. In addition, we have included an Appendix which
presents such basic ideas as set, function, and equivalence relation. We have found
it most profitable not to dwell on these ideas independently, but to advise the
students to read the Appendix when these ideas arise.
Throughout the book we have included a great variety of examples of the
important concepts which occur. The study of such examples is of fundamental
importance and tends to minimize the number of students who can repeat definition,
theorem, proof in logical order without grasping the meaning of the abstract
concepts. The book also contains a wide variety of graded exercises (about six
hundred), ranging from routine applications to ones which will extend the very
best students. These exercises are intended to be an important part of the text.
Chapter 1 deals with systems of linear equations and their solution by means
of elementary row operations on matrices. It has been our practice to spend about
six lectures on this material. It provides the student with some picture of the
origins of linear algebra and with the computational technique necessary to understand
examples of the more abstract ideas occurring in the later chapters. Chapter
2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats
linear transformations, their algebra, their representation by matrices, as well as
isomorphism, linear functionals, and dual spaces. Chapter 4 defines the algebra of
polynomials over a field, the ideals in that algebra, and the prime factorization of
a polynomial. It also deals with roots, Taylor’s formula, and the Lagrange interpolation
formula. Chapter 5 develops determinants of square matrices, the determinant
being viewed as an alternating n-linear function of the rows of a matrix,
and then proceeds to multilinear functions on modules as well as the Grassman ring.
The material on modules places the concept of determinant in a wider and more
comprehensive setting than is usually found in elementary textbooks. Chapters 6
and 7 contain a discussion of the concepts which are basic to the analysis of a single
linear transformation on a finite-dimensional vector space; the analysis of characteristic
(eigen) values, triangulable and diagonalizable transformations; the concepts
of the diagonalizable and nilpotent parts of a more general transformation,
and the rational and Jordan canonical forms. The primary and cyclic decomposition
theorems play a central role, the latter being arrived at through the study of
admissible subspaces. Chapter 7 includes a discussion of matrices over a polynomial
domain, the computation of invariant factors and elementary divisors of a matrix,
and the development of the Smith canonical form. The chapter ends with a discussion
of semi-simple operators, to round out the analysis of a single operator.
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers
the basic geometry, relating orthogonalization to the idea of ‘best approximation
to a vector’ and leading to the concepts of the orthogonal projection of a vector
onto a subspace and the orthogonal complement of a subspace. The chapter treats
unitary operators and culminates in the diagonalization of self-adjoint and normal
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and
self-adjoint operators on an inner product space, moves on to the spectral theory
of normal operators and then to more sophisticated results concerning normal
operators on real or complex inner product spaces. Chapter 10 discusses bilinear
forms, emphasizing canonical forms for symmetric and skew-symmetric forms, as
well as groups preserving non-degenerate forms, especially the orthogonal, unitary,
pseudo-orthogonal and Lorentz groups.
We feel that any course which uses this text should cover Chapters 1, 2, and 3thoroughly, possibly excluding Sections 3.6 and 3.7 which deal with the double dual
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and
determinants, may be treated with varying degrees of thoroughness. In fact,
polynomial ideals and basic properties of determinants may be covered quite
sketchily without serious damage to the flow of the logic in the text; however, our
inclination is to deal with these chapters carefully (except the results on modules),
because the material illustrates so well the basic ideas of linear algebra. An elementary
course may now be concluded nicely with the first four sections of Chapter
6, together with (the new) Chapter 8. If the rational and Jordan forms are to
be included, a more extensive coverage of Chapter 6 is necessary.
Our indebtedness remains to those who contributed to the first edition, especially
to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp,
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby.
In addition, we would like to thank the many students and colleagues whose perceptive
comments led to this revision, and the staff of Prentice-Hall for their
patience in dealing with two authors caught in the throes of academic administration.
Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill
and her tireless efforts in typing the revised manuscript.
K. M. H. / R. A. K.
 
  • #3
anybody? nobody?

I really need an answer :tongue:
 
  • #4
bump again, hopefully someone can answer this time around
 
  • #5
thrill3rnit3 said:
bump again, hopefully someone can answer this time around
There are several questions in the original post.
Do you own the first edition of the book? I suggest you to go to any university library and check out for the second edition and judge by yourself the differences.
Have you tried Google books? (I can't use the system right now), hopefully you can get some preview.
 
  • #6
Yes, I do own the 1st edition. Unfortunately, going to a university to manually check isn't one of my options; because if it is, I would've done it already.
 
  • #7
thrill3rnit3 said:
Yes, I do own the 1st edition. Unfortunately, going to a university to manually check isn't one of my options; because if it is, I would've done it already.
Ok, the post of Howers shows the content of the second edition. You can compare with yours.
So I guess you're asking if the first edition is as good as the second. I don't know. All I know is that the content of the first edition is indeed really good but maybe there is not as much content as in the second edition. So don't hesitate to go through and learn from your book.
This book has a good reputation.
 

1. What is the difference between the various editions of Hoffman and Kunze's linear algebra textbook?

The main difference between the editions of Hoffman and Kunze's linear algebra textbook is the content. Each edition has updated and revised material, as well as new examples and exercises. The later editions also often have corrections and improvements from previous editions.

2. Which edition of Hoffman and Kunze's linear algebra textbook is the most recommended?

The most recommended edition of Hoffman and Kunze's linear algebra textbook is typically the latest edition. This is because it contains the most up-to-date information and corrections. However, some instructors may have a preference for a specific edition, so it is always best to check with your professor.

3. Can I use an older edition of Hoffman and Kunze's linear algebra textbook for my course?

It is generally recommended to use the latest edition of Hoffman and Kunze's linear algebra textbook for your course. However, if you are unable to access the latest edition, an older edition may still be sufficient. Just make sure to check with your professor to ensure that the content aligns with the course material.

4. Are there any major differences between the international and US editions of Hoffman and Kunze's linear algebra textbook?

The main difference between the international and US editions of Hoffman and Kunze's linear algebra textbook is the inclusion or exclusion of certain sections or chapters. The international edition may also have different examples and exercises compared to the US edition. It is best to check with your professor to see which edition they recommend for your course.

5. Is it necessary to have a physical copy of Hoffman and Kunze's linear algebra textbook, or is an electronic version sufficient?

It ultimately depends on personal preference and course requirements. Some students may prefer a physical copy for studying and note-taking, while others may find an electronic version more convenient. Check with your professor to see if they have a preference or if a specific format is required for the course.

Similar threads

  • Science and Math Textbooks
Replies
4
Views
2K
  • Science and Math Textbooks
Replies
17
Views
1K
  • Science and Math Textbooks
Replies
11
Views
2K
  • Science and Math Textbooks
Replies
1
Views
1K
  • Science and Math Textbooks
Replies
6
Views
1K
Replies
12
Views
3K
  • Science and Math Textbooks
Replies
1
Views
3K
  • Science and Math Textbooks
Replies
15
Views
2K
  • Science and Math Textbooks
Replies
7
Views
3K
  • Science and Math Textbooks
Replies
13
Views
2K
Back
Top