Register to reply

Gamma Function, Gamma 1/2=root pi

by leila
Tags: 1 or 2root, function, gamma
Share this thread:
leila
#1
Dec20-05, 10:35 AM
P: 19
Hiya,

I'm having trouble finding a simple proof for gamma of 1/2 = root pi?

Any suggestions
Phys.Org News Partner Science news on Phys.org
Climate change increases risk of crop slowdown in next 20 years
Researcher part of team studying ways to better predict intensity of hurricanes
New molecule puts scientists a step closer to understanding hydrogen storage
Astronuc
#2
Dec20-05, 11:23 AM
Admin
Astronuc's Avatar
P: 21,810
One approach would be to show

[itex]\Gamma(x)\Gamma(1-x)[/itex] = [itex]\frac{\pi}{sin(\pi x)}[/itex]

then let x = 1/2.
TD
#3
Dec20-05, 02:11 PM
HW Helper
P: 1,024
If you know the Beta-function too, and the relation with the Gamma-function:

[tex]B\left( {u,v} \right) = \frac{{\Gamma \left( u \right)\Gamma \left( v \right)}}{{\Gamma \left( {u + v} \right)}}[/tex]

Then it's easy to use the definition of the Beta-function to compute B(1/2,1/2) which gives [itex]\pi[/itex], so:

[tex]B\left( {\frac{1}{2},\frac{1}{2}} \right) = \pi = \frac{{\Gamma \left( {\frac{1}{2}} \right)\Gamma \left( {\frac{1}{2}} \right)}}{{\Gamma \left( 1 \right)}} = \Gamma \left( {\frac{1}{2}} \right)^2 \Leftrightarrow \Gamma \left( {\frac{1}{2}} \right) = \sqrt \pi [/tex]

Jelfish
#4
Dec20-05, 03:27 PM
P: 130
Gamma Function, Gamma 1/2=root pi

Oh I use to tell people that (-1/2)!^2=pi and then they'd ask me to show them why so I kept this one in memory. (of course this doesn't prove that (-1/2)!^2 = pi since factorial isn't really defined on non-negative non-natural numbers).

Start with the Gamma Function:
[tex]\Gamma (x)= \int \limits_0^\infty \exp (-t) t^{x-1} dt [/tex]
[tex]\Gamma (\frac{1}{2})= \int \limits_0^\infty \exp (-t) t^{-\frac{1}{2}} dt[/tex]

Then make the following substitution:
[tex]u=t^{\frac{1}{2}} [/tex]
[tex]du=\frac{1}{2}t^{-\frac{1}{2}}dt \Rightarrow t^{-\frac{1}{2}}dt=2du[/tex]

And the original equation becomes:
[tex]\Gamma (\frac{1}{2})= 2 \int \limits_0^\infty \exp (-u^2) du[/tex]

The next part is the 'trick.' The trick is to then square gamma so you have two integrals with two different variables of integration (say, x and y). Because of their form, you should be able to combine them into one integral and then change it into another two-variable coordinate system where pi's are used. Becareful when changing limits (hint: when you integrate over two variables from 0 to infinity, you are effectively integrating over the first quadrant. Therefore, you should change your limits to your new coordinate system to make sure you are also integrating over the first quadrant)


(EDIT from before: sorry I forgot this was the homework help section; As you can see, I've curtailed my answer )
Jameson
#5
Dec20-05, 04:30 PM
P: 788
Yeah, you'll need to switch to polar coordinates and the evaluating the double integral is pretty straightfoward. You can Google "Gaussian Integral" to see the technique used.


Register to reply

Related Discussions
Gamma function Calculus 12
Relation of g^uv = (1/2) {gamma^u,gamma^v} to gravitational fields General Physics 15
The gamma function Calculus 2
Gamma Function Introductory Physics Homework 1