# Quantum Gravitation...

by Orion1
Tags: gravitation, quantum
 P: 989 Quantum Gravitation String Theory: Planck's Radius: $$r_p = \sqrt{ \frac{ \hbar G}{ c^3}}$$ Minimum observable length for a quantum string: $$r_m = 2 \sqrt{ \alpha '}$$ Planck's Radius is minimum observable length for a quantum string: $$r_p = r_m$$ Planck area of the hyperspace amplified Salam G* strong short range low energy gravity. $$\sqrt{ \frac{ \hbar G}{ c^3}} = 2 \sqrt{ \alpha ^'}$$ Alpha Prime: $$\alpha ' = \frac{ \hbar G}{ 4 c^3}$$ Alpha Prime is constant for a Planck Scale Bosonic String. String Tension: $$T_s = \frac{ 1}{2 \pi \alpha '}$$ Quantum Gravitation String Tension: $$T_g = \frac{ 2 c^3}{ \pi \hbar G}$$ Relationship between distance and momentum: $$\Delta L = \frac{ \hbar}{ p} + \alpha ' \frac{ p}{ \hbar}$$ Quantum Gravitation distance and momentum: $$\Delta L = \frac{ \hbar}{ p} + \frac{ G p}{4 c^3}$$ Bosonic and fermionic hadronic Regge trajectory resonance: $$J = \alpha ' E^2$$ $$J = \frac{ \hbar G}{ 4 c^3} E^2$$ $$E = \sqrt{ \frac{ 4 J c^3}{ \hbar G}}$$ Reference: http://superstringtheory.com/basics/basic3a.html http://www.lepp.cornell.edu/spr/2001-05/msg0032717.html