Register to reply

Path integral over probability functional

by Jezuz
Tags: functional, integral, path, probability
Share this thread:
May22-06, 12:18 PM
P: 31
Hi. Can anyone tell me how to solve the path integral

[tex] \int D F \exp \left\{ - \frac{1}{2} \int_{t'}^{t} d \tau \int_{t'}^{\tau} ds F(\tau) A^{-1}(\tau - s) F(s) + i \int_{t'}^{t} d\tau F(\tau) \xi(\tau) \right\} [/tex]

In case my Latex doesn't work the integral is over all possible forces F over the functional

\exp \left\{ - \frac{1}{2} \int_{ t' } ^{ t } d \tau \int_{ t' } ^{ \tau } ds F( \tau ) A^{-1} ( \tau - s ) F( \tau) + i \int_{ t' } ^{t} d \tau F( \tau ) \xi ( \tau ) \right\}

I have tried to solve it by making the discrete Fourier transform of the functions F, A^{-1} and \xi but I run into some trouble when doing that.

Phys.Org News Partner Science news on
'Smart material' chin strap harvests energy from chewing
King Richard III died painfully on battlefield
Capturing ancient Maya sites from both a rat's and a 'bat's eye view'

Register to reply

Related Discussions
A functional that depends on an integral? Calculus 3
Help with this path integral. Quantum Physics 2
Path integral Quantum Physics 3
Functional integral (semiclassic formula) Quantum Physics 2
Path Integral Development Quantum Physics 3