Q.M. harmonic oscillator


by spdf13
Tags: harmonic, oscillator
spdf13
spdf13 is offline
#1
Feb1-04, 12:24 AM
P: 10
Here's the problem:

A one dimensional harmonic oscillator has mass m and frequency w. A time dependent state psi(t) is given at t=0 by:

psi(0)=1/sqrt(2s)*sum(n=N-s,n=N+s) In>
where In> are the number eigenstates and N>>s>>1.

Calculate <x>. Show it varies sinusoidally; find the frequency and amplitude. Compare the amlitude and frequency to the corresponding values of a classical harmonic oscillator.


Here's how I proceeded:

<x>=(1/2s) (some constants)*sum(n=N-s,n=N+s)*sum(m=N-s,m=N+s) <n I (a+a') I m> Exp[i(Em-En)t/h]

(note a' is "a dagger")

=(1/2s) (some constants)*sum(n=N-s,n=N+s)*sum(m=N-s,m=N+s) {sqrt(m) <n I m-1> + sqrt(m+1) <n I m+1>} Exp[i(En-Em)t/h]

(note <n I m-1>=delta(n,m-1) and <n I m+1>=delta(n,m+1).

=(1/2s) (some constants)*sum(n=N-s,n=N+s) {sqrt(m+1) Exp[-iwt] + sqrt(m) Exp[iwt]}

This is where I get stuck. I don't know if I'm supposed to make some approximation since N>>s>>1, and approximate the term in the {} as sqrt(m) cos (wt), or if I'm just completely wrong from the start. If someone can help, I'd really appriciate it.
Phys.Org News Partner Science news on Phys.org
NASA's space station Robonaut finally getting legs
Free the seed: OSSI nurtures growing plants without patent barriers
Going nuts? Turkey looks to pistachios to heat new eco-city
Tom Mattson
Tom Mattson is offline
#2
Feb3-04, 03:05 PM
Emeritus
Sci Advisor
PF Gold
Tom Mattson's Avatar
P: 5,540
Originally posted by spdf13
This is where I get stuck. I don't know if I'm supposed to make some approximation since N>>s>>1, and approximate the term in the {} as sqrt(m) cos (wt), or if I'm just completely wrong from the start. If someone can help, I'd really appriciate it.
If N>>s, then all the numbers in the range of the index of summation [N-s,N+s] are approximately equal to N. That is, it is (approximately) as though you only have a single term.

That single term is going to be of the form:

sqrt(N+1)exp(-i&omega;t)+sqrt(N)exp(i&omega;t)

The thing that is screwing this up from being a sinusoid is the fact that the two terms have different coefficients. Now is the time to invoke N>>1. Do that to approximate as follows:

sqrt(N)[exp(-i&omega;t)+exp(i&omega;t)]=2sqrt(N)cos(&omega;t)
spdf13
spdf13 is offline
#3
Feb4-04, 07:13 PM
P: 10
I think you're right. Thanks for the help.


Register to reply

Related Discussions
Harmonic Oscillator Introductory Physics Homework 12
Harmonic Oscillator Advanced Physics Homework 2
harmonic oscillator Introductory Physics Homework 3
Harmonic Oscillator Introductory Physics Homework 4
harmonic oscillator Quantum Physics 3