Register to reply

Effect of Damping on Steady State Vibration:Harmonic Excitation

Share this thread:
jrm2002
#1
Nov26-06, 07:53 AM
P: 58
Considering the response of a single degree of freedom system to harmonic excitation with viscous damping , following conclusions can be drawn:

Now,

The response of a single degree of freedom system to harmonic excitation can be split into:

a) Steady Sate response (or vibration) which is a result of the applied force.
b)Transient vibration which is the the result of the free vibration and is dependent on the initial conditions.Right?

Now, the transient vibration decays with time as a consequence of damping.Right?

But, it is also observed that the amplitude of the steady state response incraeses with time.This can be mathematically be proved easily as a consequence of the solution of the differential equation.

My question is:

1)What is the physical reasoning for the amplitude of the steady state response increasing with time?

Besides,
It is also found that the amplitude of the steady stae response is more in systems without damping (a theoretical case though) and is less in systems with damping.Right?

My question is:

2)That means, damping palys a role in reducing the amplitude of both steady state response as well as transient response?But, the transient (free vibration) response eventually decays completely as a consequence of dapming.Right?
Can anyone throw some more light on this???
Phys.Org News Partner Physics news on Phys.org
Symphony of nanoplasmonic and optical resonators produces laser-like light emission
Do we live in a 2-D hologram? New Fermilab experiment will test the nature of the universe
Duality principle is 'safe and sound': Researchers clear up apparent violation of wave-particle duality

Register to reply

Related Discussions
Steady state solution Calculus & Beyond Homework 2
Steady state refrigeration Advanced Physics Homework 1
Free Vibration-Damping Introductory Physics Homework 2
ODE steady state solution Introductory Physics Homework 2