Please Help! given a+b=ab=a^b, probe a=b=2


by vadlamudit
Tags: babab, probe
vadlamudit
vadlamudit is offline
#1
Apr24-03, 08:27 AM
P: 12
Please help me on this:

Given a+b=ab=a^b
prove a=b=2

it seems like a very simple task but I have lost my sleep for the past
couple of nights over it.

please help or ill be [:((] [:((] [:((] [:((] [:((]
Phys.Org News Partner Mathematics news on Phys.org
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
Pseudo-mathematics and financial charlatanism
Paradox
#2
Apr24-03, 06:52 PM
P: n/a
Sorry, you realised it before I did.
Paradox
#3
Apr24-03, 07:11 PM
P: n/a
Okey doke, the (hopefully) non-erroneous method.

a+b = ab => b = ab-a = a(b-1)

ab = ab => b = ab-1

so, b = a(b-1) = ab-1

dividing by a;

b-1 = 1b-2 = 1 => b = 2

a+b = ab => a+2 = 2a => a=b=2

dg
#4
Apr24-03, 07:25 PM
P: n/a

Please Help! given a+b=ab=a^b, probe a=b=2


Originally posted by Paradox
Okey doke, the (hopefully) non-erroneous method.

a+b = ab => b = ab-a = a(b-1)

ab = ab => b = ab-1

so, b = a(b-1) = ab-1
Good until here....

dividing by a;

b-1 = 1b-2 = 1 => b = 2

a+b = ab => a+2 = 2a => a=b=2
Not good the first passage... it would be
b-1 = ab-2
Lonewolf
Lonewolf is offline
#5
May24-03, 12:38 PM
P: 333
This may well be a bit late, but I was bored and browsing through some old posts.
Using a+b = ab, we get a = ab-b = b(a-1)
So, ab = b(a-1)b
But, b*b(a-1)b = ab, so, a = b*(a-1)b
Now, b*(a-1)b = b(a-1), so (a-1)b = (a-1)
This is true if a=2, or b=1.
Substituting b=1 into ab = a+b, a*1 = a+1, which leads to 0=1, a contradiction, thus b is not 1.
Substituting a=2 into ab = a+b, 2b = b+2, so b=2.
Substituting these two values into ab= ab = a+b
22 = 2*2 = 2+2, as required. Thus, a=b=2.
suffian
#6
May24-03, 04:34 PM
P: n/a
Originally posted by Lonewolf

Using a+b = ab, we get a = ab-b = b(a-1)
Agreed.

So, ab = b(a-1)b
Not quite sure I follow here.
If a = b(a-1), then it follows that ab = ( b(a-1) )b = bb(a-1)b
Lonewolf
Lonewolf is offline
#7
May24-03, 04:42 PM
P: 333
Quite right. Well spotted.
Lonewolf
Lonewolf is offline
#8
May24-03, 05:06 PM
P: 333
I figured where I went wrong. It was my dodgy handwriting...

a=b(a-1)
ab=bb(a-1)b
ab=b2(a-1)=bb(a-1)b
So, (a-1) = bb-2(a-1)b
Then, 1 = bb-2(a-1)b-1
This is true if bb-2 is 1, and (a-1)b-1 is 1.
bb-2 = 1 if b-2=0, so b=2. (a-1)=1, so a=2.
suffian
#9
May24-03, 09:31 PM
P: n/a
Originally posted by Lonewolf
Then, 1 = bb-2(a-1)b-1
This is true if bb-2 is 1, and (a-1)b-1 is 1.
bb-2 = 1 if b-2=0, so b=2. (a-1)=1, so a=2.
I don't disagree, but that doesn't really prove that there are no other numbers a and b for which bb-2 and (a-1)b-1 are inverses.

edit:

I think the problem essentially boils down to prove no real solutions other than a=2 for:

aa-2=(a-1)a-1
Thoth
#10
May25-03, 01:52 AM
P: n/a
How about this?

From (1):ab=ab we get (b)*ln(a)=ln(a)+ln(b) and
From (2):a+b=ab we get a=b/(b-1) so ln(a)=ln(b/(b-1))

subsitute (2) into (1) to get:

(b)*ln[(b/b-1)]=ln(b/(b-1))+ln(b) so

ln(b/(b-1))b=ln(b2/(b-1)) which means that

bb=b2 therefore,

b=2 and from a=b/(b-1) we get a=2/(2-1)=2
[g)]
Lonewolf
Lonewolf is offline
#11
May25-03, 03:39 AM
P: 333
ln(b/(b-1))b=ln(b2/(b-1))
I think it's good up until here. The b should be in the brackets to make

ln([b/(b-1)]b)

This problem is harder than it first seems [s(]

There are other inverses to my equation after all...take b=1, then a could be any real number, except 1...oh well. I think Thoth's onto something though.
arcnets
arcnets is offline
#12
May25-03, 04:55 PM
P: 513
I. a+b=ab
I. b=ab-a
I. b=a(b-1)
I. a=b/(b-1)

II. ab=a^b
I into II. b^2/(b-1)=(b/(b-1))^b

2ln b - ln(b-1) = b ln b - b ln(b-1)
(2-b)ln b = (1-b)ln(b-1)
(2-b)/(1-b) = ln(b-1)/ln(b)

Use definition of ln...

(2-b)/(1-b) = lim(n->[oo]) n((b-1)^(1/n)-1) / n(b^(1/n)-1)
n cancels ...
(2-b)/(1-b) = lim(n->[oo]) ((b-1)^(1/n)-1) / (b^(1/n)-1)
Using Bernoulli...
(2-b)/(1-b) = lim(n->[oo]) (1 + b/n -1/n -1) / (1 + b/n -1)
(2-b)/(1-b) = lim(n->[oo]) (b-1)/b
(2-b)/(1-b) = (b-1)/b
2b-b^2 = 2b-b^2-1
0=-1
No solution.
Wow. Where's the flaw? I know the RHS must be zero.
Hopital, maybe?
suffian
#13
May25-03, 05:33 PM
P: n/a
(2-b)/(1-b) = lim(n->inf) ((b-1)^(1/n)-1) / (b^(1/n)-1)
Using Bernoulli...
(2-b)/(1-b) = lim(n->inf) (1 + b/n -1/n -1) / (1 + b/n -1)
I think your flaw may be in making the transition above, I don't know Bernoulli's rule or how you changed the ln's into a limit, but the limits don't match up:

lim(n->inf) [ ((b-1)^(1/n)-1) / (b^(1/n)-1) ] = ln(b-1)/ln(b)

and

lim(n->inf) [ (1 + b/n -1/n -1) / (1 + b/n -1) ] = (b-1)/b

I would be a little hesitant to use ln's anyway because you don't know whether the quantities are negative. But it looks like a new avenue.
Thoth
#14
May26-03, 01:21 AM
P: n/a
Lonewolf, you are probably right and I might need to change my classes[a)]. But as far as I can tell[8)], the result of both ln(b/(b-1))b and what you wrote comes out the same, which is: ln(bb/(b-1)b))=ln(b2/(b-1). However I give your opinion the benefit of the doubt since typing mathematics does not come easy for me[:((].

A major factor is to look at a=b/(b-1) and ln(a)=ln(b/(b-1)) and ask what values for b make sense for a?

Here a=b/(b-1) first we notice that b cannot be =1 because of the singularity at b=1.
After noticing this we then have to ask how about if b>1 and b<1 what would happen then. As b increases in value how a is being effected. We also need to know what values for both a and b satisfies the given conditions in the problem.

In ln(bb/(b-1)b))=ln(b2/(b-1) means this: bb/(b-1)b=b2/(b-1). (By using eln definition). If bb=b2 then b=2 and if (b-1)b=(b-1)1 then b=1. however, we knew already that b cannot be 1. [:D]
suffian
#15
May26-03, 09:57 AM
P: n/a
Originally posted by Thoth

In ln(bb/(b-1)b))=ln(b2/(b-1) means this: bb/(b-1)b=b2/(b-1). (By using eln definition). If bb=b2 then b=2 and if (b-1)b=(b-1)1 then b=1. however, we knew already that b cannot be 1. [:D]
Unfortunantly, for that last equation to be true, bb does not need to equal b2 and (b-1)b need not equal (b-1). As long as the ratio between the pairs is satisfied, the equation can be satisfied and so we haven't yet proved no other real numbers can satisfy the last equation.
KLscilevothma
KLscilevothma is offline
#16
May28-03, 02:37 AM
P: 321
This question has troubled me for some time, finally I gave it to my math teacher and he gave me an elegant solution today.

b=ab-1
b-1 = b/a
b=ab/a
ba=ab
a log b = b log a
log a / a = log b / b

a=b (as the function f(x)=logx/x is strictly increasing)
=>2a = a2
a=b= 2 or 0

I think the proof would be more elegant if we can do it using pure algebra.
ahrkron
ahrkron is offline
#17
May28-03, 09:30 AM
Emeritus
PF Gold
P: 734
Originally posted by KL Kam
...
a log b = b log a
log a / a = log b / b

a=b (as the function f(x)=logx/x is strictly increasing)
It is not!

f(1/e) = log(1/e)/e = -log(e)/e = -1/e
f(e) = log e / e = 1/e
f(e^2) = log(e^2)/(e^2) = 2/e^2 =(2/e)*(1/e) < 1/e

i.e., it goes up and then back down.
suffian
#18
May28-03, 01:11 PM
P: n/a
hey guys, i'm quite sure i solved the problem, but since i'm busy i'll try to post a formal proof by the end of the day.


Register to reply

Related Discussions
four probe Introductory Physics Homework 3
A space Probe in the shape of an ellipsoid...find the hottest point on the probe's su Calculus & Beyond Homework 0
measuring pH probe potential and interfacing probe with uC Electrical Engineering 1
Gravity probe-B Special & General Relativity 36