Register to reply

Find the exponential Fourier series of x(t) = 2 + 0.5cos(t+45)+2cos(3t)-2sin(4t+30)

Share this thread:
VinnyCee
#1
Oct7-07, 04:47 PM
P: 492
1. The problem statement, all variables and given/known data

For the periodic signal

[tex]x(t)\,=\,2\,+\,\frac{1}{2}\,cos\left(t\,+\,45^{\circ}\right)\,+\,2\,cos \left(3\,t\right)\,-\,2\,sin\left(4\,t\,+\,30^{\circ}\right)[/tex]

Find the exponential Fourier series.


2. Relevant equations

Euler’s Formula
[tex]x(t)\,=\,A\,cos\left(\omega_0\,t\,+\,\phi\right)\,=\,A\,\left[e^{j\,\left(\omega_0\,t\,+\,\phi\right)}\,+\, e^{-j\,\left(\omega_0\,t\,+\,\phi\right)}\right][/tex]


3. The attempt at a solution

To get [itex]\omega_0[/itex], we need to find the least common denominator between the following periods…

[tex]\frac{2\,\pi}{3},\,2\,\pi,\,\frac{\pi}{2}[/tex]

Which is [itex]2\,\pi[/itex].


So, now I use the formula [itex]\omega_0\,=\,\frac{2\,\pi}{T}[/itex]…

[tex]\omega_0\,=\,\frac{2\,\pi}{2\,\pi}\,=\,1[/tex]


Now, I use Euler’s formula to convert the cos and sin to exponentials…

[tex]x(t)\,=\,2\,+\,\frac{1}{2}\,\left[e^{j\left(t\,+\,45^{\circ}\right)}\,+\,e^{-j\left(t\,+\,45^{\circ}\right)\right]\,+\,2\,\left[e^{j\left(3\,t\right)}\,+\,e^{-j\left(3\,t\right)}\right]\,-\,2\left[e^{j\left(4\,t\,-\,60^{\circ}\right)}\,+\,e^{-j\left(4\,t\,-\,60^{\circ}\right)}\right][/tex]

I don’t know if the last term (sin) is supposed to be kept as [tex]4\,t\,+\,30^{\circ}[/tex]

OR changed to a cosine to fit Euler’s formula by subtracting ninety degrees: [tex]4\,t\,-\,60^{\circ} [/tex]


I assumed the latter, is that correct?
Phys.Org News Partner Science news on Phys.org
'Office life' of bacteria may be their weak spot
Lunar explorers will walk at higher speeds than thought
Philips introduces BlueTouch, PulseRelief control for pain relief

Register to reply

Related Discussions
Need help to find application of the Fourier series and Fourier Transforms! Introductory Physics Homework 8
Exponential Fourier Series for Pulse Train Calculus & Beyond Homework 2
Rom fourier transfom to fourier series Calculus & Beyond Homework 1
To find the sum of a fourier series...? Calculus & Beyond Homework 3
Fourier Series / Fourier Transform Question Electrical Engineering 6