## prove that the square root of 3 is not rational

1. The problem statement, all variables and given/known data
Show that the square root of 3 is not rational

2. Relevant equations

3. The attempt at a solution

A number is irrational if χ is not ε. Q=p/q: p, q ε z and q is not=0, z=integers

If p/q: p, q is not ε or q=0, then square 3 is rational. If p=square root of 3 and q is not ε, then the square root of 3 cannot be rational.

Could someone please tell me if this is correct and if not show me what I need to do?

Thank you very much
 PhysOrg.com science news on PhysOrg.com >> City-life changes blackbird personalities, study shows>> Origins of 'The Hoff' crab revealed (w/ Video)>> Older males make better fathers: Mature male beetles work harder, care less about female infidelity
 What is your $$\epsilon$$? Do you know how to show that $$\sqrt{2}$$ is irrational?
 x ε is "x is an element of x" Yes, I do. Thank you very much Now I know how to do it Regards

 Similar discussions for: prove that the square root of 3 is not rational Thread Forum Replies Precalculus Mathematics Homework 11 General Math 6 Calculus & Beyond Homework 6 Introductory Physics Homework 4 General Math 5