Register to reply

Von Neumann Entropy of GHZ state

by neu
Tags: entropy, neumann, state
Share this thread:
neu
#1
Apr15-08, 06:43 PM
P: 245
I just wanted to run this working by some of you.

Simplest Greenberger-Horne-Zeilinger state (entagled) state is:

[tex]\mid GHZ \rangle = \frac{1}{\sqrt{2}}\left(\mid 0 \rangle_{A}\mid 0 \rangle_{B}\mid 0 \rangle_{C}+\mid 1 \rangle_{A}\mid 1 \rangle_{B}\mid 1 \rangle_{C}\right)[/tex]

density matrix is:
[tex] \rho = \frac{1}{2} \left( \mid 0 \rangle \langle 0 \mid_{A}\mid 0 \rangle \langle 0 \mid_{B}\mid 0 \rangle \langle 0 \mid_{C} + \mid 1 \rangle \langle 1 \mid_{A}\mid 1 \rangle \langle 1 \mid_{B}\mid 1 \rangle \langle 1 \mid_{C} \right) [/tex]

reduced density matrix of qubit A:

[tex] \rho_{A} = Tr_{B}\left(Tr_{C}\rho\right) = \frac{1}{2} \left( \mid 0 \rangle \langle 0 \mid_{A}Tr\left(\mid 0 \rangle \langle 0 \mid_{B}\right)Tr\left(\mid 0 \rangle \langle 0 \mid_{C}\right) + \mid 1 \rangle \langle 1 \mid_{A}Tr\left(\mid 1 \rangle \langle 1 \mid_{B}\right)Tr\left(\mid 1 \rangle \langle 1 \mid_{C}\right) \right) [/tex]

[tex] \rho_{A} = \frac{1}{2}\left( \mid 0 \rangle \langle 0 \mid_{A} + \mid 1 \rangle \langle 1 \mid_{A}\right) = \frac{1}{2}
\left[\left(
\begin{array}{ c c }
1 & 0 \\
0 & 0
\end{array}\right) +
\left(
\begin{array}{ c c }
0 & 0\\
0 & 1
\end{array}\right)\right]
[/tex]

So the eigenvalue equation of [tex]\rho_{A}[/tex] is :
[tex]
\mid
\begin{array}{ c c }
\frac{1}{2}-\lambda & 0\\
0 & \frac{1}{2}-\lambda
\end{array}\mid = 0
[/tex]

so [tex]\lambda = \frac{1}{2}[/tex] and Von neumann entropy [tex] S(\rho_{A}) = - \Sigma_{i} \lambda_{i} log_{2} \lambda_{i} [/tex] is:

[tex] 2^{-2S(\rho_{A})} = \frac{1}{2} [/tex]

So [tex] S(\rho_{A}) = \frac{1}{2}[/tex]
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
neu
#2
Apr17-08, 10:20 AM
P: 245
oui ou non?
genneth
#3
Apr17-08, 11:14 AM
P: 980
No. The density matrix has off-diagonal terms as well.

neu
#4
Apr17-08, 03:31 PM
P: 245
Von Neumann Entropy of GHZ state

Quote Quote by genneth View Post
No. The density matrix has off-diagonal terms as well.
Yeah I realise this, but they cancel when finding the reduced matrix from the tracing.

So get same result.

Thanks I get it anyway now; I've gone over it a few times


Register to reply

Related Discussions
Von Neumann entropy Quantum Physics 4
Von neumann entropy, log(P) ? Quantum Physics 3
Von neumann, pointer state Quantum Physics 4
Von Neumann probes General Physics 2