Register to reply

So You Want To Be A Physicist

by Greg Bernhardt
Tags: physicist, physics jobs
Share this thread:
Greg Bernhardt
#19
Sep13-13, 11:21 AM
Admin
Greg Bernhardt's Avatar
P: 9,574
Written by ZapperZ

Part XV - Writing Your Doctoral Thesis/Desertation

At this stage, you have performed your doctoral research work, maybe even have published (or about to publish) a paper or two, and may have presented your work at a physics conference. It is time for you to think about finishing this part of your life. However, before you can do that, you have a couple more obstacles to get through - writing your thesis/dessertation and defending it. We will discuss the first one in this chapter.

You and your adviser should have narrowed down the main points that you will need to cover in your thesis. More often than not, you would have done more than you need during your graduate research work. It is not unusual that a graduate student has studied a number of different areas within his/her field of study, especially in the very beginning of his/her research work. However, it doesn't mean that anything and everything need to be included in the doctoral thesis. Your thesis must present a coherent research work that you have accomplished that no one else has done. So you and your adviser do need to be very clear on exactly what area that should be included, and what shouldn't. Chances are, if you have published your work in a peer-reviewed journal, the area being covered by that paper would qualify as something that should be covered in your thesis.

Once you and your adviser have agreed on the general scope that should be in your thesis, it is time for you to organize your thoughts and figure out what to write. You should have plenty of practice already by now if you have published a few papers already. So all the advice on writing a paper applies here. Figure out the central points that you wish to convey and try to make your point as direct and as clear as possible. Note also that depending on your school's requirement, you may have to explore the background of the issues/physics in general terms. This is because in many schools, your thesis committee may comprise of not just individuals who are familiar with your field of study, but also individuals from other fields or even other departments. So pay attention to what needs to be covered based on what kind of thesis committee that you will be facing.

When it comes to the actual writing process, this is where you will need (i) your institution's thesis guidelines and (ii) copies of thesis that have already been written. The first one should be available from the graduate school program at your school. Read it carefully. It will tell you a number of things you must follow, including (i) thesis formatting/typesetting requirement (ii) the format and order of the thesis (iii) thesis committee requirements. Pay attention to how your thesis should be written, especially in terms of figures(*), captions, bibliography format, section titles, etc. In some schools, they might even have a read-made template for you to use with your favorite word processor (or even Tex editor) that can make your life easier. Looking at older thesis from your department will give you specific examples on what can and cannot be done. Chances are, your adviser will give you examples of already-approved thesis, or you may even have been referring to one already. So look at all of those as guides. Do not relegate this as something trivial. Your thesis will be looked at by a thesis examiner, who can and will reject it if it does not conform to the format required, and thereby possibly delaying your graduation. Note also that in many schools, the graduate program often has a short briefing on those who intend to submit their thesis in that particular semester. This can be either a 1 hour class, or an individual meeting with the thesis examiner. Make sure you attend this and be aware of what is required.

How long a thesis should be is highly subjective. I've seen advisers who don't care how long it is, while others who don't want it longer than, say 150 pages. I'd say that it should be as long as it needs to be. Don't ramble on and on and turn it into War and Peace, but you also do not want it to be lacking in details, because these are the details that probably no one else has worked on.

As you are writing it, pay attention to the deadlines that you school has listed if you wish to graduate at the end of a particular year or semester. This is very important, because missing it could mean that your graduation will be delayed. If you wish to graduate at the end of the semester, look at first and foremost, when your thesis is due for submission to the graduate program. Now work backwards. Move that date two weeks earlier. Why? This is because you want to be sure that if there's unanticipated problems with your thesis, that there's plenty of time to correct it. So that two-weeks-early date should be the latest you should hand it in. Note that this is your planned FINAL SUBMISSION. This should NOT be the first time you have shown your thesis to the thesis examiner. So you should plan on a meeting with the thesis examiner even earlier than this two-weeks-early date. For the sake of illustration, let's put this as 4 week's early than the final deadline. So 4 week's before the graduate school's published deadline, you should meet the thesis examiner for the very first examination of your thesis. There's a very good chance that you will need to make modifications, hopefully minor ones if you have paid close attention to the required format. This will give you two weeks left to make the correction and to make your final submission two weeks before the graduate school deadline. Confusing? Hopefully, not.

So it does mean that if you wish to have a completed form 4 weeks before the hard deadline, you need to already have done your thesis defense by then. This means you have incorporated comments you received during your thesis defense into your written thesis, AND have received final approval from all your thesis committee members [thesis defense process will be discussed in the next chapter]. This, again takes time. This means that you should schedule your thesis defense at least 2 months before the graduate school's hard deadline (I would even suggest a little longer). This will give you time to make changes, to send the corrected version to all the committee members, to allow for more changes, and then to get their approval. These things can be time consuming, trust me!

So if you have to schedule your thesis defense 2 months before the hard deadline, then you should need to contact your thesis committee members before then to schedule your defense. Sometime it can be a chore to get a suitable date, so plan ahead. It also means that you now have a good idea on when you should be done with the writing of your thesis! So pay attention to that date! It is the clearest indicator that, if you want to graduate at the end of that semester, you must be done writing by that date! Your thesis committee members will need to have your thesis in their hands at least a week before you can call for your defense. So if you work this backwards again, you should have a good idea of the date where you should be all done. Knowing this, it will guide you on when you should start writing your thesis, and how fast you have to work to be done by that date.

Note that, depending on how involved your adviser wants to be, he or she may want to see the progress of your thesis as you are writing it. You may also want to consult with him/her along the way as you are progressing. This may save major revisions afterwards especially if both you and your adviser don't see eye-to-eye. Fine as this may be, you should always keep in mind that the thesis should be your own work and not expect your adviser or anyone else to write parts of it for you.

Hopefully, this guide will give you an idea on what to expect, especially on time management. The last thing you want to have is sleep deprivation while writing your thesis simply because of things you haven't anticipated, or you didn't give yourself ample time.

(*) The issue on how figures can be displayed in a thesis can be a major headache. Most thesis requirements do not allow for color figures because your thesis will be sent to a service that will archive it as a microfilm. This destroys all color effects. In some schools, they will allow you to make two versions of your thesis - one with a color figure that can be used as the distribution/department/library copies, while another for microfilm archive.
Greg Bernhardt
#20
Sep13-13, 11:22 AM
Admin
Greg Bernhardt's Avatar
P: 9,574
Written by ZapperZ

Part XVI - Your Thesis Defense

At this point, you have completed writing your thesis, your adviser has approved of it, and you have distributed it to all the members in your thesis committee. It is now time for you to do your thesis defense. Officially, this is the final obstacle standing in your way between you and your Ph.D degree. Needless to say adequate preparations are necessary.

What exactly is a thesis defense? This is where you demonstrate your mastery of the subject matter that you have been researching during your years as a Ph.D candidate. To put it bluntly, since you are producing an original, new work to be added to the body of knowledge of physics, you have to prove that (i) you understand the physics inside out and (ii) you are the world expert on this particular area. In fact, in certain parts of your thesis, even your adviser may not know as much, or as in detail, as you. This is where you have to establish yourself as someone who knows a lot on this particular topic. You must know every single thing that you wrote in your thesis, and maybe even some beyond that, especially if you make specific reference to other theories or experiments. Your thesis committee will try to judge if you are an expert in such a field.

The most important person that should prepare you for your defense (other than yourself) is your adviser. Your adviser would have guided you in the beginning into a research subject that would satisfy the graduate school/departmental requirement that your work is new, original, and something significant that contributes to the body of knowledge. Publishing in respected peer-reviewed journals would be a major indication that your work is accepted as being new and significant. So in preparation for your defense, he/she should try to impress upon you on making sure that you mention somewhere during your thesis defense that such-and-such work that you did was published in so-and-so journal. More importantly, though, is that your adviser might know certain "quirkyness" of certain members of your committee that might help you to prepare for. If a particular professor always likes to ask about "historical significance" of certain things, or maybe he/she likes to always try to include his/her own research area, then these are the things you should prepare for. It is ALWAYS a good strategy that if you happen to have used or cited the work of one or more of the committee members, then you should make sure you mention this clearly. You'd be surprised how well those kinds of acknowledgments can go down. This should be a common practice throughout your career. In any case, in preparing for your defense, talk to your adviser and ask him/her for his opinion. It may be that your adviser would like you to do a trial run at doing your defense. JUMP at such an opportunity. Such practice is always a good idea. Do this in front of your adviser and other graduate students (who should already be keen on seeing what it should look like since they have to go through the same thing soon enough). Such practice should allow for last-minute kinks to be worked out and to prevent major disasters.

How long your defense should take place depends very much on your adviser and the procedure enacted at your school. Most schools leave it entirely to your adviser. In turn, most advisers would prefer a defense that is between an hour to two hours. However, I have seen a defense that took place over a span of 2 days! It wasn't pretty. So in your practice, make sure you pay attention to how long you are presenting your defense. You do not want your audience, or worse yet, your committee members, to fall asleep.

Most thesis defense are usually announced to the public via the usual seminar/colloquium announcement made by your department. So everyone is usually welcome to attend your defense. Typically, the first part of your defense is similar to you giving a seminar. At the end of your presentation, everyone in attendance is invited to ask questions. The committee members usually would not ask anything during this time, but they will pay attention to how you respond to the questions being asked. So do not trivialize a question, even though it came from one of your buddies in attendance. After this question and answer session, the rest of the audience will be asked to leave, and the closed session will be just between you and the committee members. This is where usually the difficult questions will come up. They will disect your presentation and the content of your written thesis. Pay careful attention to what they ask, answer as thoroughly as you can, and acknowledge any comment or suggestion that they give. Sometime, a question can really come out from left field that you simply did not expect, and you find yourself stumbling along. More often than not, if you have a good adviser, he/she might offer a reply to try to guide you into a right path. So pay attention and try to see if you can get any hints there. Just keep in mind that just because you are unable to answer something which might not be central to your work, this does not mean that they will fail you. So whatever you do, do not panic.

After the committee is done with this session, you will be asked to leave and they will deliberate your fate. My anecdotal account of my defense goes like this: they decided to stay in their deliberation for about 10 minutes longer JUST to make me squirm and sweat. At this stage, there's nothing else you can do. Just exhale, relax, and try not to stress out. Unless something really disasterous happened during your defense, you can almost be assured that you have accomplished your goal. After the committee's deliberation, your adviser will officially informed you if you have passed through your defense. He/she will also inform you of any changes that are necessary to your thesis based on suggestions from the committee members. These are the changes that you need to make before getting the final approval from all of them for you to submit to the thesis examiner/graduate school.

Other than that, it is time to rejoice. You have done a significant accomplishment that was not easy, and took years of hard work and sacrifice. In the eyes of many, you are now a Physicist!

However, is that all there is? You can go out now and work as a Physicist? If only life is that simple and straightforward. In the next chapter, we will go back in time to approximately one year from your joyous occasion at completing your studies. Your journey on becoming a physicist isn't done yet just because they are handing you your Ph.D degree.
Greg Bernhardt
#21
Sep13-13, 11:22 AM
Admin
Greg Bernhardt's Avatar
P: 9,574
Written by ZapperZ

Part XVII - Getting a Job!

In the previous chapter, we have reached the point where you have finished with your thesis defense, and also thesis submission to the graduate school. You are all set to go into the nasty physics world and look for a job.

If that is your case, then you are SCREWED! You do NOT start to look for a job only after you are done with your defense. This will be too late and should only be resorted to if you have no other choice. So while you think you are done with your physics curriculum, your job future requires that we go back in time to about one year before you plan on graduating.
By that time, you would have an idea on your career path. You should know if you wish to pursue an academic career, an industrial career (for those of you who have this option), or maybe even get out of physics completely. Still, unless you have a Nobel Laureate as an adviser and have made a name for yourself in such a way that there are institutions rolling out the red carpet for you, you should keep your options open. Remember, you will have to start making a living, and ideals will not feed you much.

I will go into the academic career path first since this is the more tedious side. If you do decide to follow this path, then you will have to start seeking a post-doctoral appointment. Most universities and national laboratories will tend to hire new Ph.Ds at the post-doctoral level (note that US National laboratories will not hire a Ph.D for a post-doc position who obtained a Ph.D beyond 4 years of the date of the appointment).

There are two common places to look for openings for a post-doc position. The first is the classified section of Physics Today. Typically, the largest number of openings for post-doc and faculty positions are advertised during the Fall/early Spring for an appointment in the Fall of the following year. So an opening for Fall 2007 would tend to get advertised more often in Fall 2006/ early Spring 2007. This is why you have to start almost a year in advance in your job hunt.

The other avenue to find post-doc openings is during physics conferences, specially the APS March and April Meetings. The APS provides a job service to both job seekers and employers during the conference. You will have to register with the APS and submit your resume. While you don't have to attend these conferences to submit your resume, I strongly advice you to be present. There are professors and schools that will advertise for an opening right on the spot (these are usually posted on the Job Center bulletin boards). So you can also look for something that you might qualify and immediately make contact. Not only that, but in many cases, if you have submitted a resume, you might be contacted by an employer present at the conference, and an interview can be set up during the conference itself.

This is where I will illustrate with my own personal experience. A few months before I graduated, I attended the APS March Meeting to not only present a talk, but also continue looking for a job. I already had an offer from Applied Materials to go into the industrial route. While I was excited with this and would pursue this line gladly, I knew that my first aim was still in academia/research and so I continued to look. Attending the Job Fair at this March Meeting was almost a last-minute decision. As fate would have it, a faculty member was looking for a post-doc to work at Brookhaven, and happened to be well-acquianted with my adviser at that time. He read my resume and figured that with my background and with the "name recognition" from my adviser, that I would be a strong candidate. I received a message from the Job Center of a request for an interview later in the week of the conference. However, without my knowing it, the faculty member seek out when I will be presenting my talk, and attended the session to see me "in action", so to speak.

I found this out later during our interview, and he was satisfied that I fit the bill to carry out the research work that he had planned. While no job offers were made at the interview, I left feeling that it went tremendously well. It was a week later that the job offer was officially made, which I accepted.

The moral of the story here is that in many cases, you truly have to try all the possible avenues, and the Job Fair at these conferences can be quite effective because in many instances, the employers are also there seeking candidates.

The last possible avenue is the one that is very uncertain and something you should not depend on - word of mouth. Often, various faculty members, usually your adviser, would have heard from his/her various colleagues or contacts, about post-doc openings elsewhere, or even within your department. If a faculty member recommends something to you, consider it seriously. There's a good chance that the person looking to hire knows the faculty member, and name recognition alone will give you a leg up on another candidate. This is what I meant by "pedigree" in an earlier chapter of this series. Unfortunately, this situation doesn't happen often, and that is why I said that you should not rely on such a thing happening.

If instead, you are opting for an industrial or non-academic position, then you need to cast your net a lot wider. Sources such as Physics Today and the APS Meetings are still valid, since those do carry non-academic positions (that was how I managed to snag the Applied Materials offer). However, you also need to look at the "trade journal" of the area you are looking for. Solid state physics specialists should look in IEEE journals, for example.

Do not forget to use your school's job placement services. Many employers will seek out new graduates, and your school can also list your resume with employers they think might be interested with your background. Industrial employers will tend to go through this route, especially if they had success with a particular school before. So don't leave out this option.

Again, all of these should be done approximately a year before you plan on graduating. Make sure you have your resume ready. Have it checked properly, and make sure you include ALL publications.

In the next installment, I will go into your role as a post-doc fellow, and how things will look different from that point onwards.
Greg Bernhardt
#22
Sep13-13, 11:23 AM
Admin
Greg Bernhardt's Avatar
P: 9,574
Written by ZapperZ

Part XVIII - Postdoctoral Position

If you intend to pursue an academic/research career, chances are, you will need postdoctoral experience. This is typically a 2 to 3-year appointment either at a university, national laboratories, or industrial laboratories such as Bell Lab. It is not uncommon for someone to do 2 postdoctoral positions before finding a suitable employment. So this part of your career could drag on longer than expected. However, for most candidates, this could easily be the most productive part of your career and when you can effectively make a name for yourself.

A postdoctoral position is usually created out of a research grant. It means that funds have been allocated to hire a person at that position for the duration stated. Once that duration ends, the position will also end. This is why it is a temporary position. In some cases, if the institution has an opening, they might consider you for a permanent position. However, you should not depend on this and should always consider it as temporary.

The reason why a postdoctoral experience is usually deemed necessary to obtain highly sought-after position in leading universities and national laboratories is that these institutions want to employ individuals who (i) have shown the ability to carry on world-class research work on their own (ii) have the creativity to find new and important things to study (iii) can seek funding. These are the skills that one obtains and can demonstrate while a being a postdoctoral appointee (seeking funding may not be relevant for a postdoc in many areas such as theoretical work, or in large projects such as high energy physics).

Unlike your position as a graduate student, a postdoctoral appointee is expected to hit the ground running. Presumably, with your Ph.D, you were hired for your expertise in a particular area. You also have quite a bit more freedom in pursuing the particular area of research. While the broad outline of the area of study is set by your supervisor, you essentially can, in fact, discuss with him/her a line of research that you think should be pursued. You are expected to be able to work independently and show your creativity in that field of study. Your supervisor is no longer there to hold your hand the way your Ph.D adviser did.

If your appointment is with an academic institution, part of your responsibility may also involve some form of teaching or academic responsibility. Again, while such responsibility may take you away from doing research work, consider it as added experience that you can add to your resume as you continue to seek a more permanent position. It can only be an advantage to be able to include teaching experience in your job application, especially if you apply to an academic institution. So do not look at such responsibility with disdain.

During your postdoctoral appointment, you are highly expected to publish a few papers, preferably in leading journals. You are expected to know how to go about doing this. You may also be expected to supervise graduate students who will learn from you and your expertise. This is your chance (and even responsibility) to give back what you were given while you were a graduate student.

The issue of funding is a bit difficult to tackle because in many cases, it really depends on the institution. In some institution, the very fact that you can get research funding on your own might be the impetus for them to continue to hire you as a staff member. In national laboratories, you might be expected to be able to seek funding via what is known as the LDRD (laboratory-directed research and development), which are short-term fundings for projects that are potentially capable of receiving larger external funding. Remember that you are there only temporarily. Your ability to attract funding may in fact make you more attractive to be hired, or simply lengthen your postdoctoral appointment. However, you should try to learn as much as possible (probably from your supervisor) on how to seek research funding. Try asking him or her to see an example of a research funding proposal that has gotten through. In physics, the majority of research funding comes from the US Dept. of Energy (DOE) and the National Science Foundation (NSF). Go to their websites and look carefully at the requirement and format to submit a research funding proposal, even if you don't intend to write one. Chances are, you will need to know how to do one of these sooner or later.

Throughout your appointment, you should not stop continuing to look for job opening. It may turn out that as your appointment ends, you may have to seek a second postdoctoral position. Note however that for US National labs, there is usually a 6-year limit from the date that you received your Ph.D to qualify for a postdoctoral position. So if you have received your Ph.D longer than 6 years ago, you no longer qualify for a postdoctoral position.

As temporary and as uncertain as it is, to me, the postdoctoral period is when one truly begins to feel like a physicist. One is now doing directly the type of work one has been dreaming off all those years. There is also little to no other distractions away from one's work, so this is what a physicist truly is, in the purest sense. You will realize later on that as one finally obtain a more permanent position, one is also saddled with other administrative responsibilities that come with the job. So look at the postdoctoral position as the buffer, or transition between your life as a student having a mentor, to being a physicist where you now have to make your own decisions. This transition period may be your most productive and the last time you get to be single-minded on a particular area of physics.
Greg Bernhardt
#23
Sep13-13, 11:23 AM
Admin
Greg Bernhardt's Avatar
P: 9,574
Written by ZapperZ

Part XIX - Your Curriculum Vitae

I am going to backtrack a little bit and talk about writing your Curriculum Vitae (CV) and what you should focus on in search for a job in physics. This includes looking for a Postdoctoral position, a research position, and possibly a faculty position at a university.

I am going to base this on my own personal experience in hunting for jobs, my conversation with others who were in my position, my discussion with other supervisors who were looking for candidates for a position, and my own experience in browsing applicants' CV to fill a couple of positions. I would say that most physics applicants do not pay that keen of an attention to their CV, and one sometime wonders if they are truly interested in a particular position that they are applying for.

Here are the items that MUST appear on your CV:
1. Name, mailing address, e-mail address, phone number;
2. A brief (one short paragraph, or even just a sentence) on your goal;
3. Your educational background. List in reverse chronological order, i.e. the last degree obtained first.
4. Your skills, expertise, and knowledge;
5. Other awards, recognition;
6. List of publications (if there's too many, list the more important ones, or the ones relevant to the job you are applying to).

Try not to exceed more than 2 pages. Keep in mind that people who are reading this have to read a lot of other CVs from other applicants. If it is too long, one loses interest very quickly.
Most of what I've listed above are pretty self-explanatory, and most applicants know what do write, except for #4. This is what I will try to discuss in the rest of this chapter. From what I have read of a number of CVs lately, this is where many applicants drop the ball.

Most CVs that I've received wrote way too much on the "physics" content. Now, such a thing may be appropriate in some circumstances, especially if you're applying in the very exact, same area of knowledge as your research area. The person who is hiring would probably know the subject matter quite well, and would be very interested in it. However, this is also not very common. What occurs most of the time is that you are applying for a position, especially for a postdoc position, in which the subject area is a bit different, some time VERY different, than the subject area that you majored in. What is in common are the skills and expertise that you have that the potential employer is looking for. So HIGHLIGHT THE EXPERTISE AND THE SKILLS in the CV! Don't bury it under lots of physics and don't simply mention it in passing. Not only are you not showing to the potential employer what he/she is looking for, but it also shows that you simply sent out a generic CV without bothering to tailor it to this particular job position. I had that impression many times while reading several CVs.

Let's do an example. Say I'm looking for someone who can make photocathodes for some particular application. Now, I'm not looking for someone with an exact background who majored in photocathode physics, because it isn't a common area of specialization, and there probably isn't that many students who graduated with that knowledge. However, I am looking for someone who has the expertise to make material fabrication. In particular, I'm looking for someone who has the expertise to make thin films of semiconductors, using various deposition technique, especially chemical vapor deposition (CVD).

Unfortunately, it was hard to find that in many of the CVs that I read. Most of the CV talked about the physics (or chemistry) of the material, what was studied, how the physics was important, etc. In cases where the applicants did mention about making thin films, the skimped on the details. I would say something like this: "Ability to make thin films for XRD and XPS studies to arrive at the strain-stress effects on the band structure". Yes, what WHAT did you use to make the thin films? That is what I am looking for, and you had just glossed over that piece of information! The strain-stress effects on band structure is the "physics", and unless you are applying for a research position in which THAT is one of the areas of study for that open position, the potential employer probably cares VERY little about that useless fact.

Instead, what the applicant should have done is say something like "Ability to fabricate metals and semiconductor thin films using MOCVD, producing large epitaxial single crystals. I am also able to analyze these thin films using XRD to evaluate the quality of the thin films". The applicants could also list ALL of the thin film materials that he/she had the ability to make. Now THIS would be something valuable. In doing that, the applicant has revealed the skill that he/she has, and it is a skill that completely transcends any particular subject matter area. This is because the skill to make films using CVD technique is used in MANY different areas, and not just in physics either. Having that skill allows one to apply to a large variety of jobs that would not have been possible if one were to stick to simply the subject matter of one's major area. This is why such skills MUST be clearly and plainly described in one's CV!


Discussion can be found here
"So You Want To Be A Physicist" Discussion


Register to reply

Related Discussions
Are the LQG physicist less prepared than the ST physicist? Beyond the Standard Model 12
The Should-I-Become-A-Theoretical-Physicist-or-Experimental-Physicist? Thread! Academic Guidance 44
Theoretical physicist? mathematician? mathematical physicist? Academic Guidance 3
Quantum physicist vs Nuclear Physicist vs Chemical Engineer Career Guidance 5
Engineer -> Experimental Physicist -> Theoretical Physicist General Discussion 27