# Hermite Polynomials

by Domnu
Tags: hermite, polynomials
 P: 178 Since the Hermite Polynomials are orthogonal, could one state that they span all polynomials $$f$$ where $$f : R \rightarrow R$$? This would be EXTREMELY useful for the harmonic oscillator potential in quantum mechanics...
P: 2,162
 Quote by Domnu Since the Hermite Polynomials are orthogonal, could one state that they span all polynomials $$f$$ where $$f : R \rightarrow R$$? This would be EXTREMELY useful for the harmonic oscillator potential in quantum mechanics...
No. If you think of the two vectors:
(1, 0, 0) and (0, 1, 0)
They are orthogonal to each other, but they don't span.
on the other hand, consider the three vectors:
(1, 0, 0), (1, 1, 0), (1, 1, 1)
They span, but they are not orthogonal to each other.
Therefore, knowing that the Hermite Polynomials are orthogonal is not enough to show that they span. You would need to prove that.
 Sci Advisor P: 1,128 It doesn't follow from orthogonality alone, but it is nevertheless true.
P: 178

## Hermite Polynomials

 Quote by jimmysnyder No. If you think of the two vectors: (1, 0, 0) and (0, 1, 0) They are orthogonal to each other, but they don't span. on the other hand, consider the three vectors: (1, 0, 0), (1, 1, 0), (1, 1, 1) They span, but they are not orthogonal to each other. Therefore, knowing that the Hermite Polynomials are orthogonal is not enough to show that they span. You would need to prove that.
Fair enough... okay so I guess a better argument would be that the Hermite polynomials are infinite in number and are all orthogonal, so they span all functions?
 PF Patron P: 220 They are useful to express any function defined on the range on which they are orthogonal. Other orthogonal polynomials will be useful to express functions on the range on which they are orthogonal (e.g. Legender polynomials on [-1,1].
HW Helper
P: 2,020
 Quote by Domnu Fair enough... okay so I guess a better argument would be that the Hermite polynomials are infinite in number and are all orthogonal, so they span all functions?
No, that doesn't make any sense.

In what sense are you using the word "span"?
 P: 178 I'm using the word span in the sense that any polynomial of the form $$f(\xi) = a_n \xi^n + a_{n-1} \xi^{n-1} + a_{n-2} \xi^{n-2} + \cdots + a_1 \xi + a_0$$ can be written as a linear combination of $$H_0, H_1, \cdots, H_n$$. I see I had a typo in my last post... I meant that the Hermite polynomials could span all polynomials (real).
P: 2,162
 Quote by Domnu Fair enough... okay so I guess a better argument would be that the Hermite polynomials are infinite in number and are all orthogonal, so they span all functions?
No. For instance, the following are mutually orthogonal and infinite in number, but they don't span,
(0,1,0,0,0,...)
(0,0,1,0,0,...)
(0,0,0,1,0,...)
...
HW Helper