Register to reply

Electric vehicles to pay for detroit bailout?

by mgb_phys
Tags: bailout, detroit, electric, vehicles
Share this thread:
mheslep
#73
Jan12-09, 10:26 PM
PF Gold
P: 3,098
Quote Quote by WhoWee View Post
...

As for system capacity/logistics...if only 10,000 stations came on-line and stored 100 batteries each, up to 1,000,000 cars could be serviced once daily.

Obviously, equipment to handle the batteries would be required as well as an investment in charging apparatus for the stations...lot's of workers could be retrained and jobs upgraded.
Google is your friend.
http://www.betterplace.com/our-bold-...hange-stations
Has some possibilities, but it smells a little too much 'our bold plan' is mostly about the founder, Agassi.
mheslep
#74
Jan12-09, 10:45 PM
PF Gold
P: 3,098
Quote Quote by mgb_phys View Post
It gets most of it's oil from the middle east and pays in $ so it can't cost much less than in the US (taxes aside).
It doesn't want to be held hostage by a bunch of US client states so it has a strategic interest to reduce it's usage as much as possible, giving all it's new middle class car buyers an alternative to SUVs is probably a good move.
The Chinese price fix, gas stayed well below the over $4/gal prices found elsewhere when oil spiked last year, and now that oil is cheap they have radically bumped up the gas tax (as of Jan 1), holding the price relatively constant. I favor a mild gas tax, the only tax I favor.
mgb_phys
#75
Jan12-09, 11:21 PM
Sci Advisor
HW Helper
P: 8,953
The point is that even if a $/day is a regular wage in China for people assembling Walmart stuff - there isn't a huge amount the government can do to make imported oil cheaper, other than just pay for it themselves.
Since there is a much bigger discrepancy between internal costs and imported oil costs compared to the west there is a larger incentive to reduce consumption, at least by domestic customers.
WhoWee
#76
Jan13-09, 06:25 PM
P: 1,123
Quote Quote by mheslep View Post
Google is your friend.
http://www.betterplace.com/our-bold-...hange-stations
Has some possibilities, but it smells a little too much 'our bold plan' is mostly about the founder, Agassi.
I didn't know anyone was trying to do something similar...not sure he's worried about the 180,000 gas station owners/operators/employees.

Again, the biggest challenge would be to create a Battery Standard that everyone would agree to use...VHS/BETA comes to mind.
mheslep
#77
Jan13-09, 10:26 PM
PF Gold
P: 3,098
Quote Quote by WhoWee View Post
I didn't know anyone was trying to do something similar...not sure he's worried about the 180,000 gas station owners/operators/employees. ..
No need to be worried about them. 1. Even if the perfect EV was invented today it would take a decade to completely turn over the auto fleet, and then there's still the trucks. 2. Gas station operators don't make money be selling gas. The suppliers take all that profit. The retailers make money by getting one to pull over and buy something else - car repair, food, car wash, etc.
mheslep
#78
Jun4-09, 04:07 PM
PF Gold
P: 3,098
Quote Quote by russ_watters View Post
...
There are millions of laptop computers out there and currently a manageable growth rate, yet the market has yet to make the batteries inexpensive. I don't know why you would think a vast increase in demand would cause the prices to drop.
I heard a claim that the price per kWh of Li-ion batteries was dropping by 2x every five years, a kind of Moore's law for Li-Ion, so I did some research to run it down. The attached figure from an EPRI brief shows Japanese METI data that backs this up - since 1999 the price has been dropping by at least half every five years in real terms. Also, instead of energy capacity cost, the more practical metric should be lifetime cost per transportation mile delivered, and that's already down to 2 per mile by my calculations.
Attached Thumbnails
METI_Battery_Price_History.png  
Ivan Seeking
#79
Jun4-09, 06:55 PM
Emeritus
Sci Advisor
PF Gold
Ivan Seeking's Avatar
P: 12,500
There was a clear path to miniturazation and cost reduction for integrated circuits. Is there any similar path for battery technology, or are we only assuming that the graph will continue on its current trend?

Just by looking at the graph, one might also think that we are reaching a limit.
mheslep
#80
Jun5-09, 11:33 AM
PF Gold
P: 3,098
Quote Quote by Ivan Seeking View Post
There was a clear path to miniturazation and cost reduction for integrated circuits. Is there any similar path for battery technology, or are we only assuming that the graph will continue on its current trend?
I agree with those reservations. A big part of the IC problem was managing technical complexity (more and more gates, etc), and that is something very tractable to engineering approaches - add more and more sophistication in VLSI tools and manufacturing process. Doubling IC capability every 18 months mostly did not require fundamental breakthroughs. So I agree drawing parallels to Moore's law for battery improvements is misleading regards the mechanics, however, it is none the less a correct analogy just in terms of results for the last decade.

Just by looking at the graph, one might also think that we are reaching a limit.
Yes could be, though if so it would not be limited by the fundamental cost of raw materials, since improvements can be made by continuing to find ways to jam more energy into the same material, or simply to make them last longer. As I observe the scale and diversity of financing going into Li-Ion now, and some recent research announcements, leads me to believe the cost will continue dropping per the exponential model for a while yet. If there's a physical reason that batteries can not eventually approach the same energy density as chemical fuels it escapes me.
mheslep
#81
Jul18-09, 11:33 PM
PF Gold
P: 3,098
A few months back but Im interested in the battery history, and this post by Russ exactly points out the limitations of the current state of the art for product available.
Quote Quote by russ_watters View Post
The energy density and charging time (and don't forget cost) problems are fundamental, so I think the hope for a pure electric is overly optomistic. There are other relevant numbers that you aren't looking at, though: such as the cost, weight, and energy density of batteries. For example, the energy density of gas is 46 MJ/kG. The energy density of a lithium battery is .75. Assuming that only 1/3 of the gas's energy makes it to the wheels of the car (and this includes the inefficiency of sitting in traffic), we need to do about 20x better than lithium batteries to power our cars. That's a lot - it's not something that should be expected to be technologically possible.
Looks like Lithium Air has the potential:

Battery Digest

Theoretical and Practical?
The determination of the theoretical maximum capacity of a Lithium-air battery is complex, and there isn’t a flat statement of fact in the Handbook of Batteries , Third Edition as are many more well developed chemistries. To provide the most accurate value for the maximum capacity, BD asked Dr. Arthur Dobley to provide an expert opinion, which we quote as follows:
“Specific capacity:
n For lithium metal alone 13 kWh/kg. [46.8MJ/kg]
n For the lithium and air, theoretical, 11,100 Wh/kg [40MJ/kg], not including the weight of oxygen, and 5,200 Wh/kg including the weight of oxygen. This was checked by calculation and agrees with K.M. Abrahams publication ,JECS 1996.
n For the Lithium air cell, practical, 3,700 Wh/kg [13MJ/kg], not including the weight of oxygen, and 1,700 Wh/kg with the weight of oxygen. These numbers are predictions and are made with the presumption that 33% of the theoretical energy will be obtained. The battery industry typically obtains 25% to 50% of the theoretical energy (Handbook of Batteries). Metal air batteries are higher in the range. Zinc-air is about 44% (Handbook of Batteries, 3rd Ed. pg 1.12 and 1.16 table and fig).
Lithium Air has been demonstrated at these high capacities, but it currently has some severe practical problems: capacity falls off sharply with temperature, and the introduction of any water into the cell destroys it - a problem since the cell needs ventilation for air (oxygen). Meanwhile, at least there is a known chemistry capable of containing that much energy.

Edit: Another issue w/ Li Air is that the traditional design is a primary battery (non-rechargeable), though a rechargeable alternative w/ the same theoretical charge capacities is feasible and also a topic of study.
mheslep
#82
Oct6-09, 03:05 PM
PF Gold
P: 3,098
Quote Quote by mheslep View Post
An appropriately named title IvanS. The WSJ had another piece on BYD today so I'm starting to believe this is real.
WSJ Jan 12
WSJ October
Interesting video tour of the plant, interview with Wang
http://online.wsj.com/article/SB1231...31572313.html#

History of BYD and founder Wang as I can gather from various sources:
-1980s Wang studies metallurgical physics and chemistry in college, 1980s. MS Degree. Research position in nonferrous Metals in Beijing. Gets bored, quits just as government opens up the Chinese markets.
-1995 Wang borrows $300k from cousin, starts cellphone battery company BYD.
-1998 Wang tells 20 engineers to 'quietly scale up' cellphone batteries for cars. They develop a dinky all EV car.
-2005 BYD develops an all gas/ICE ripoff of the Toyota Corolla to get experience in car manufacture. Since then BYD has become one of China's best (not the best) home grown car makers.
-2008 BYD revenue $3.1B, 10,000 engineers and techs, 130k total people. 2nd largest battery maker in the world. HQ in Shenzhen, China close to Hong Kong.
-2008 September. Warren Buffet acquires 10% of BYD, $230 million investment.
-2008 Nov-Dec. BYD begins selling the 'F3DM' in China: a plugin electric-gasoline hybrid 5-seat sedan, 50-60mi battery range, $22k
Plans:
-2009 Release pure EV with 180mi per charge range.
-2010 Release of the F3DM plugin hybrid in the US/Europe.
-2011 Release of extended range pure EV in US.
...
An amazing display from a guy who bummed cash from his cousin. GM? Hello?


Since this last post, BYD founder/owner Wang has won billing as China's richest man:

Quote Quote by FT
The owner of a Shenzhen car and battery maker has emerged from the growing pack of Chinese millionaires to be named the richest person on the mainland after a boost to his wealth driven by an investment by Warren Buffett.

Wang Chuanfu, the founder and chairman of BYD , jumped from 103rd to first place with a net worth of $5.1bn, according to the annual Chinese rich list compiled by Hurun , a Shanghai-based consultancy....
http://www.ft.com/cms/s/0/ea5eb1c0-a...nclick_check=1
Jasongreat
#83
Oct6-09, 04:10 PM
P: 75
It seems to me that we are getting ahead of ourselves, even if we do develop a cheaper electric car we are still getting our power from "dirty" sources, until we have clean energy to power the electric cars it doesnt seem to me that we will be any better off. We are just trading gas emisions for coal emissions. Why not convert our power plants to cleaner electric generating sources before we worry about building the product that will benifit us by using it? By the time we get the power plant problem solved there will be more advanced technology available to us in order to build a cheap, safe and affordable electric car.
Topher925
#84
Oct6-09, 04:45 PM
Topher925's Avatar
P: 1,672
Quote Quote by mheslep View Post
If there's a physical reason that batteries can not eventually approach the same energy density as chemical fuels it escapes me.
There is a physical reason, the second law of thermodynamics. Batteries will never come close to the capacity of fossil fuels, its just not thermodynamically possible. I'm pretty sure you can ball park the energy density of a battery if you know the gibbs free energy and enthalpies of formation of its reactants along with their atomic mass.

I think the best batteries can ever do is hydrogen/scandium based chemistry's in terms of energy density but then I think the volumes get pretty big.

Therefore, the maximum theoretical potential of advanced lithium-ion batteries that haven't been demonstrated to work yet is still only about 6 percent of crude oil!
http://www.thebulletin.org/web-editi...age-technology

I don't think chemical based storage devices (batteries, chemical type capacitors) will ever have an energy density greater than 10% of gasoline. In order to do that you need some type of electrochemical engine (aka. fuel cell).
mheslep
#85
Oct6-09, 10:33 PM
PF Gold
P: 3,098
Quote Quote by Topher925 View Post
There is a physical reason, the second law of thermodynamics. Batteries will never come close to the capacity of fossil fuels, its just not thermodynamically possible.
See below.
I'm pretty sure you can ball park the energy density of a battery if you know the gibbs free energy and enthalpies of formation of its reactants along with their atomic mass.
Edit: Yes apparently so, thanks for the pointer/reminder.

I think the best batteries can ever do is hydrogen/scandium based chemistry's in terms of energy density but then I think the volumes get pretty big.


http://www.thebulletin.org/web-editi...age-technology

I don't think chemical based storage devices (batteries, chemical type capacitors) will ever have an energy density greater than 10% of gasoline. In order to do that you need some type of electrochemical engine (aka. fuel cell).
Ten percent would be more than enough to be practically competitive with gasoline, given a 3x efficiency advantage of electric motors over heat engines.

This BatteryDigest source states Lithium Air, not counting the weight of the O2 it pulls from the atmosphere, has a theoretical limit of 11 kilowatt-hours per kilogram, or ~40 mega-joules per kilogram, 80% of gasoline. Granted practical limits must be lower.
http://www.batteriesdigest.com/lithium_air.htm, middle of the page.

I see House touches of this where he says:
Quote Quote by House, January 2009
To get really ambitious, we imagine storing energy as elemental aluminum or elemental lithium. Those two highly electro-positive elements yield a theoretical energy density--when oxidized in air--of 32 and 43 mega-joules per kilogram. At least now the theoretical limit is between 60 percent and 80 percent to that of hydrocarbons; we just have to figure out how to extract a large fraction of the energy from that oxidation.
and he drops it and moves on? I'm fairly sure the Li Air battery has been demonstrated (yes) in the lab, w/ some major practical problems, but then this conversation is about theoretical limits for the moment.

Edit: Yes IBM thinks its worth a go:
Quote Quote by MIT TR, June 11, 2009
IBM Invests in Battery Research

The company hopes to develop powerful, lightweight lithium-air batteries.
http://www.technologyreview.com/energy/22780/

Edit:
Another paper from one of the Li Air researchers:
45MJ/kg theoretical, Table 1
http://www.yardney.com/Lithion/Docum...rAD-JD-KMA.pdf

On reflection, House's article might have been better named "Current Problems with Energy Storage ..."; I think he overstepped with the name theoretical "Limits..". At least he seems to have not reviewed the literature adequately for that task from what I briefly see.
mheslep
#86
Oct6-09, 11:25 PM
PF Gold
P: 3,098
Quote Quote by Jasongreat View Post
It seems to me that we are getting ahead of ourselves, even if we do develop a cheaper electric car we are still getting our power from "dirty" sources, until we have clean energy to power the electric cars it doesnt seem to me that we will be any better off. We are just trading gas emisions for coal emissions. Why not convert our power plants to cleaner electric generating sources before we worry about building the product that will benifit us by using it? By the time we get the power plant problem solved there will be more advanced technology available to us in order to build a cheap, safe and affordable electric car.
Three reasons:
1. US electric generation is only half coal and falling; the state w/ the most cars (Ca) uses almost none at all,
2. Even when coal emissions from electric generation for EVs go head to head with gasoline car emissions, coal is still a little cleaner per mile,
3. EVs could get the US off imported oil, keeping money onshore, and out of the hands of rogue states. Then there's more time and resources to deal with coal.
Jasongreat
#87
Oct7-09, 01:46 AM
P: 75
Quote Quote by mheslep View Post
Three reasons:
1. US electric generation is only half coal and falling; the state w/ the most cars (Ca) uses almost none at all,
That link is a little misleading, IMO, since I live fifteen miles from a coal fired powerplant whose lines leaves utah and go to southern california(there are atleast 4 other plants in utah that do the same). Ca might not use a lot of coal in state but they use plenty out of state(i would bet a lot of nevada and new mexico's coal use is used to power ca also).

2. Even when coal emissions from electric generation for EVs go head to head with gasoline car emissions, coal is still a little cleaner per mile,
If emissions is the only criteria, your point makes sense. But efficiency would also come into play I would think. Even if the energy is initially a little cleaner by the time it actually works there is less of it, so it would take more energy to acheive the same work and thereby negating your emission reductions, imo. I have heard that as of now gasoline and diesel are the most efficient sources of energy to power a vehicle and that is why we use them and I personally think that the car makers have been doing a wondeful job balancing horsepower and emissions.


3. EVs could get the US off imported oil, keeping money onshore, and out of the hands of rogue states. Then there's more time and resources to deal with coal.
So could drilling more domestic wells, using more domestic natural gas, using more coal, using hydrogen, using more oil shell, building more nuclear plants, building more windturbines, etc; etc;. Until we change how we make electricity it is of very little use to make a car that runs on it,imo. There is going to have to be huge leaps in technology to develop a EV that can haul a load of freight over the road, to take the place of trains or to power a plane in flight if we have to rely on batteries for energy storage. I would think it would be far more effective to concentrate on power generation instead of the power consumption side of the equation.
mgb_phys
#88
Oct7-09, 09:10 AM
Sci Advisor
HW Helper
P: 8,953
Quote Quote by mheslep;2381765
2. Even when coal emissions from electric generation for EVs go head to head with gasoline car emissions, coal is still a little cleaner per mile[/URL
,
Even if coal emitted more per mile it might be better to have that vented in a remote tall stack with flue scrubbers than have a lot of small sources of NOx, particulates, O3 and SO2 at street level in an area with a lot of smog potential.
Topher925
#89
Oct7-09, 10:19 AM
Topher925's Avatar
P: 1,672
Quote Quote by Jasongreat View Post
There is going to have to be huge leaps in technology to develop a EV that can haul a load of freight over the road, to take the place of trains or to power a plane in flight if we have to rely on batteries for energy storage. I would think it would be far more effective to concentrate on power generation instead of the power consumption side of the equation.
Its better to have your pollution made in a single stationary place rather than in many moving places. Pollution from power plants can be captured and/or scrubbed much more easily than it can on cars.

Also, if you look at the entire chemical cycle (more of a process I guess) from power generation to power at the wheel of cars, battery technology has the capability of reducing the overall amount of pollution due to increases in efficiency when compared to gasoline.
mheslep
#90
Oct7-09, 04:49 PM
PF Gold
P: 3,098
Quote Quote by Jasongreat View Post
So could drilling more domestic wells, using more domestic natural gas, using more coal, using hydrogen, using more oil shell, building more nuclear plants, building more windturbines, etc; etc;.
This doesn't follow. The majority of oil, about 2/3 imported for the US, goes into transportation. These others don't help the oil problem unless transportation becomes electrified.

Quote Quote by Jasongreat
Until we change how we make electricity it is of very little use to make a car that runs on it,imo.
That flies in the face of the comments I made above. Either EV's or biofueled vehicles (if made economic) would make a major difference in emissions and kill imported oil.

Quote Quote by Jasongreat
There is going to have to be huge leaps in technology to develop a EV that can haul a load of freight over the road,
Google Port of LA electric trucks, 18 wheelers

Quote Quote by Jasongreat
to take the place of trains or to power a plane in flight if we have to rely on batteries for energy storage. I would think it would be far more effective to concentrate on power generation instead of the power consumption side of the equation.
Obviously electric trains exist, even electric planes are feasible, but replacing just the cars overtime is sufficient to kill imported oil.


Register to reply

Related Discussions
Nuclear Power Liabilities Dwarf Bush's Wall Street Bailout General Discussion 10
Detroit Electric eyes comeback with Malaysia's Proton as partner General Discussion 0
Cool DC motors for electric vehicles General Engineering 2
A Sad Day In Detroit... General Discussion 13