Boundary Value Problem , triangular plate


by jc2009
Tags: boundary, plate, triangular
jc2009
jc2009 is offline
#1
Feb3-09, 07:50 PM
P: 14
This exercise deal with the temperature u(x,y,t) in a homogeneous and thin plate. We assume that the top and bottom of the plate are insulated and the material has diffusivity k. Write the BVP .

Problem: The plate is triangular , picture this as a right triangle with this coordinates, (0,0) ,
(0,5) , ( 10,0) , with the hypotenuse(slanted) side being insulated the vertical side with 0 degrees and the horizontal side with 50 degrees.

THe initial temperature is 100 degrees throughout.

Solution: what i did first is to get the equation of the slanted side which is y = -(1/2)x + 5
or 2y + x - 10 = 0 i dont know if this helps at all.

[tex]u_{x}(x,0,t) = 50 [/tex] ; 0<x<10
[tex]u(0,y,t) = 0[/tex] ; 0<y<5
now for the slanted side i dont know if this is right
[tex]u(x,y,t) = 2y + x - 10 = 0 [/tex]

any help/hints would be appreciated.

NOTE: the use of u(x,t) and confuses me , sometimes i see that they use u_x for the vertical side or BVP problems and sometimes they use u_x for the horizontal . can you help me to clarify this notation issue?
Phys.Org News Partner Science news on Phys.org
Going nuts? Turkey looks to pistachios to heat new eco-city
Space-tested fluid flow concept advances infectious disease diagnoses
SpaceX launches supplies to space station (Update)

Register to reply

Related Discussions
A proton is released from rest at the positive plate of a parallel-plate capacitor. Introductory Physics Homework 16
Turbulent Boundary layer thickness on a flat plate Mechanical Engineering 1
Boundary value problem Calculus & Beyond Homework 5
Boundary value problem Calculus & Beyond Homework 4
Boundary Value Problem Differential Equations 16